معرفی کانسار مس ماری بعنوان یک ذخیره چینه¬کران نوع مانتو در زون طارم، شمال غرب ایران
محورهای موضوعی :مهدی مرادی 1 * , سجاد مغفوری 2 , محسن موءید 3 , وحید فریداصل 4
1 - شهید بهشتی
2 - دانشگاه تبریز
3 - دانشگاه تبریز
4 - دانشگاه تبریز
کلید واژه: کانسار مس ماری چینه¬, کران تیپ مانتوتراکی آندزیت مگاپورفیری زون طارم,
چکیده مقاله :
کانسار مس ماری در شمال غرب ایران و در منطقه طارم در شمال زنجان واقع شده است. این کانی سازی از نوع چینه کران و سنگ درونگیر آن، تراکی آندزیت مگا پورفیری به سن ائوسن است. سولفیدهای اصلی مس شامل بورنیت، کالکوسیت و کالکوپیریت عمدتا همراه با پیریت می باشند. بافت های موجود در کانی سازی شامل پرکننده فضای خالی، دانه پراکنده، رگه- رگچه ای و جانشینی است. سنگهاي آتشفشانی محدوده مورد مطالعه بيشتر دارای تركيب حدواسط تا اسيدي با سرشت شوشونیتی و پتاسیم بالا بوده و یک محيط کششی ریفتی درون کمانی را نشان می دهند. دگرسانی های کربناتی، کلریتی، اپیدوتی و سریسیتی در سنگ میزبان دیده می شوند. فراوانی مس و نقره در تراکی آندزیت مگاپورفیری سالم به ترتیب تا 3200 و 216 قسمت در میلیون می باشد. بر اساس ویژگیهای اساسی توده کانه دار ماری از جمله محیط تکتونیکی، سنگ دربرگیرنده، حالت چینه کران، کانیشناسی، محتوای فلزی و دگرسانی و مقایسه این ویژگی ها با ذخایر مس تیپ مانتو (Manto- type)، کانسار مس ماری میتواند به-عنوان یک ذخیره مس تیپ مانتو در شمال غرب ایران معرفی شود. همانند سایر کانسارهای مشابه این تیپ در دنیا، سه مرحله اصلی برای کانی سازی در کانسار ماری می توان در نظر گرفت. مرحله اول شامل فعالیت آتشفشانی زیردریائی و فوران گدازه تراکی آندزیت مگا پورفیری به همراه دگرسانی ناحیه ای پروپیلیتی می باشد. در مرحله دوم، دیاژنز اولیه و فعالیت میکروارگانیسم های احیاکننده سولفات باعث تشکیل پیریت هم به صورت پرکننده فضای خالی و هم به صورت دانه پراکنده در واحد تراکی آندزیتی میزبان شده است. نهایتاً در مرحله سوم، افزایش ضخامت رسوبات، فرونشست حوضه و دیاژنز تدفینی به همراه ورود سیالات غنی از مس به داخل واحد میزبان احیایی موجب جانشینی سولفیدهای مس به جای پیریت های اولیه و کانی زایی در کانسار ماری شده است.
Similar to other deposits of this type in the world, three major stages could be considered for mineralization in Mari copper deposit. The Mari Copper deposit is located in the northwest of Iran and Tarom metallogenic zone in the north of Zanjan. The ore-body is strata-bound and hosted by the Eocene mega-porphyritic andesites. The major copper sulfides are bornite, chalcocite, and chalcopyrite associated mainly with pyrite that represent open-space filling, disseminated, vein-veinlet, and replacement textures. The volcanic rocks of the study area mostly represent intermediate to acidic composition with high potassium shoshonitic magmatic series related to intra-arc rift environments. Wall rock alterations include carbonatization, chloritization, epidotization, and sericitization. The abundances of Cu and Ag in fresh mega-porphyritic andesite are up to 3200 and 216 ppm respectively. Based on the main characteristics of Mari ore body such as tectonic setting, host rock, strata-bound form, mineralogy, metal content, and wall rock alterations and comparison of these features with Manto - type copper deposits, Mari Cu deposit can be introduced as a Manto -type Cu deposit in NW Iran. The first stage includes submarine volcanic activity and eruption of mega-porphyritic andesitic lava associated with regional propylitic alteration. In the second stage, the early diagenesis and the activity of sulfate-reducing micro-organisms resulted in the generation of pyrite in the form of open-space filling and disseminated in the mega-porphyritic andesite. Finally, in the third stage, increasing of the thickness of sediments, basin subsidence, and burial diagenesis accompanied with the entry of metal-rich fluids into the reduced host rock, caused the replacement of the first stage pyrites by copper sulfides and mineralization in the Mari deposit.
ابولی، م.، راستاد ا. و رشیدنژاد عمران، ن.، 1390. کانه¬زایی مس چینه¬کران نوع مانتو (Manto-type) در زون دهج- ساردوئیه در ناحیه کشکوئیه رفسنجان. دومین همایش زمین¬شناسی اقتصادی دانشگاه لرستان.
بویری، م.، راستاد ا. و رشیدنژاد عمران، ن.، 1393. کانی زایی مس (نقره) نوع Volcanic Red Bed در کانسار کشت مهکی، شمال باختر صفاشهر، پهنه سنندج- سیرجان جنوبی، فصلنامه علوم زمین. 93، 19 - 36.
حاج علیلو، ب.، 1378. متالوژنی ترشیری در البرز باختری- آذربایجان (میانه- سیه¬رود) با نگرشی خاص بر منطقه هشتجین، رساله دکتری زمین¬شناسی اقتصادی، دانشگاه تربیت مدرس تهران.
حاجیان، آ. و زاهدی م.، 1384. نقشه زمین شناسی 1:100000 زنجان. سازمان زمین شناسی و اکتشافات معدنی کشور.
قربانی، م.، 1387. زمین¬شناسی اقتصادي کانسارها و نشانه¬هاي معدنی ایران، انتشارات آرین زمین.
سامانی، ب.، 1381. متالوژنی کانسارهای مس تیپ مانتو در ایران، ششمین همایش انجمن زمین شناسی ایران.
علی¬زاده، و.، مومن¬زاده م. و امامی م.ه.، 1391. سنگ¬نگاری، ژئوشیمی، کانی¬شناسی، مطالعه میانبارهای سیال و تعیین نوع کانی¬زایی کانسار مس ورزگ- قاین، فصلنامه علوم زمین شماره 86، 21-38.
معین وزیری، ح. و احمدی ع.، 1381. پتروگرافی و پترولوژی سنگ¬های آذرین، انتشارات دانشگاه تربیت معلم تهران، 544.
Aghazadeh, M., Castro, A., Omran, N.R., Emami, M.H., Moinvaziri, H. and Badrzadeh, Z., 2010. The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences, 38 , 199–219.
Barnes H.L., 1979. Solubilities of ore minerals, In: Geochemistry of hydrothermal ore deposits. 2nd edn John Wiley & Sons New York, 404–410.
Castro, A., Aghazadeh, A., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene–Oligocene post collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source, Lithos 19.
Cabral A.R. and Beaudoin, G., 2007. Volcanic red-bed copper mineralization related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Mineral Deposita, 42, 901 - 912.
Campano, P. and Guerra, N., 1975. The role of bitumen in strata-bound copper deposit formation in the Copiapó area, Northern Chile. Mineral Deposita 41, 339 – 355.
Espinoza, R. S., Veliz, G. H., Esquivel, L. J. and Arias F. J., 1996. The cupriferous province of the coastal ranges, Northern Chile, In: Andean copper 194 deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geologists Spetial Publication, 5, 19-32.
Haggan, T., Parnell, J. and Cisternas M.E., 2003. Fluid history of andesite-hosted CuS-bitumen mineralization, Copiap district, North Central Chile. Journal of Geochemical Exploration, 78631-635.
Hirayama, K., Samimi, M., Zahedi, M. and Hushmand-Zadeh A., 1966. Geology of Tarom district, western part (Zanjan area, North west Iran), G.S.I 8 , 31.
Khadem, N., 1964. Types of copper deposits in Iran. In symposium on Mining Geology and The Base Metals Central Treaty Organization, Ankara.
Kirkham, R.V., 1996. Volcanic red bed copper, Geological Survey of Canada, Canadian mineral deposit types, 8, 241-252.
Kojima, S., Aguilera, D. T. and Hayashi K. I., 2007. Genetic aspects of manto type copper deposits based on geochemical studies of north Chilean deposits. Resource Geology, 59, 87-98.
Kojima, S., Trista, D., guilera, A., Ken-ichiro and Ayashi H., 2009. Genetic aspects of the manto-type copper deposits based on geochemical studies of North Chilean deposits. Resource Geology, 59, 87 – 98.
Maksaev, V. and Zentilli M., 2002. Chilean strata-bound Cu–(Ag) deposits: an overview. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper–Gold and Related Deposits. A Global Perspective. PGC Publishing Adelaide, 163–184.
Muller, D. and Groves D. I., 1997. Potassic Igneuos Rocks and Associated Gold -Copper Mineralization, Sec updated Springer Verlag, 242.
Oyarzum, R., Ortega, L., Sierra, J., Lunar, R. and Oyarzn J., 1998. Cu, Mn and Ag mineralisation in the Quebrada Marquesa Quadrangle, Chile: The Talcuna and Arqueros Districts. Mineralium Deposita, 33, 547-559.
Pecerillo, A. and Taylor S.R., 1976. Geochemistry of Eocene calc-alcaline volcanic rocks from the kastamous area, Northen Turkey. Contrib.Mineral Petrol, 58, 63-81.
Rieger, A., Schwark, L. and Cisternas M. E., 2008. Genesis and Evolution of Bitumen in Lower Cretaceous Lavas and Implications for Strata-bound Copper Deposits, North Chile, Economic Geology, 103 387- 404.
Salvi, S. and Williams-Jones, A.E.,1996. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochemical. Cosmochim. Acta 60, 1917–1932.
Wilson, N.S.F., Zentilli, M., and Spiro B., 2003. A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado Manto-type Cu deposit, Chile: The essential role of bacteria and petroleum. Economic Geology 98, 163- 174.
Winchester, J.A., and Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 16, 325-343.
Zentilli, M., Munizaga, F., Graves, M.C., Boric, R., Wilson, N.S.F., Mukhopadhyay, P.K. and Snowdon L.R., 1997. Hydrocarbon involvement in the genesis of ore deposits: An example in Cretaceous strata-bound (manto-type) copper deposits of central Chile. International Geology Review, 39, 1– 21.