زمین¬شناسی، ژئوشیمی و الگوی پراکندگی عناصر در زون¬های دگرسانی نقدوز- زایلیک، زون ماگمایی ارسباران
محورهای موضوعی :محمد¬رضا حسین¬زاده 1 * , سجاد مغفوری 2 , محسن موءید 3 , زهرا هادوی چهاربرج 4 , نصیر عامل 5 , علیرضا روان¬خواه 6
1 - دانشگاه تبریز
2 - دانشگاه تربیت مدرس
3 - دانشگاه تبریز
4 - دانشگاه تبریز
5 - دانشگاه تبریز
6 - دانشگاه محقق اردبيلي
کلید واژه: ژئوشیمی, دگرسانی, الگوی پراکندگی عناصر, نقدوز- زایلیک, زون ارسباران.,
چکیده مقاله :
منطقه مورد مطالعه در فاصله 25 کیلومتری جنوب شرقی اهر و 40 کیلومتری شمال غربی مشکین شهر و اطراف روستای نقدوز قرار گرفته است. دگرسانی گرمابی منجر به گسترش زون های آرژیلیک، آرژیلیک- سیلیسی، سیلیسی و پروپیلیتی در این منطقه شده است. بر اساس مطالعات پتروگرافی، نمونه ها ترکیبی در حد آندزیت-آندزیت بازالتی، داسیت، ریوداسیت، ریولیت و لیتیک توف داشته و اغلب دارای بافت های پورفیریک، گلومروپورفیریک، هیالومیکرولیتی و میکرولیتی پورفیریک می باشند. آنالیز XRD نمونه های دگرسان، کریستوبالیت، ناترولیت، کائولینیت، کوارتز، آلبیت، سانیدین و ارتوکلاز را به عنوان کانی های اصلی نشان می دهد. مطالعات ژئوشیمی نشان داد که سیال دگرسان کننده دارای منشأ گرمابی بوده و فرایندهای سوپرژن نیز نقش مهمی در ایجاد زون دگرسانی داشته است. در این بررسی، از روش عنصر بی تحرک، برای محاسبه تغییرات جرم و میزان انتقال عناصر نادر خاکی در طی فرایند دگرسانی گرمابی استفاده گردید. نسبت (Eu/Eu*) در نمونه های دگرسان بالاتر از نمونه تقریباً سالم است و نسبت (Ce/Ce*) برای نمونه نسبتاً سالم یک و بیشتر نمونه های دگرسان بزرگتر از یک است. نسبت (La/Yb)n نشان داد که تهی شدگی عناصر HREE نسبت به عناصر LREE در نمونه های دگرسان بیشتر از نمونه سالم است و غنی شدگی LREE نیز ممکن است باعث افزایش این نسبت شود. نسبت (La/Sm)n در نمونه های دگرسان بیشتر از نمونه سالم بوده که حاکی از تهی شدگی بیشتر عناصر MREE نسبت به LREE است. با توجه به نحوه توزیع عناصر نادر خاکی در منطقه دگرسان به نظر می رسد رفتار عناصر تحت تأثیر pH، تغییرات دما و فشار، Eh، جذب سطحی توسط رس ها و اکسید آهن و فراوانی لیگاندهای یونی قرار گرفته است.
The study area is located in 25 km SE of Ahar and 40 km NW of Meshkin-Shahr around Naqadouz village. Hydrothermal alteration has resulted in the developing of Argillic, Argillic - Silicic, Silicic and propilitic zones in this area. Based on petrographic studies, the altered rocks are basaltic andesite, andesite, dacite, rhyolite and lithic tuff in composition, with porphyry, glomeroporphyry, hyalomicrolithic and microlithic porphyric textures. The XRD analysis of altered samples show cristobalite, natrilite, kaolinite, quartz, albite, sanidine and orthoclase as the main minerals. Geochemical studies indicate that the alteration fluid has hydrothermal source and supergene processes are more important than hypogene processes. In this study, we use the immobile element method to calculate mass-changes and trace elements transmission amount during hydrothermal alteration. The Eu/Eu* ratio is higher in altered samples than relatively unaltered samples and the ratio of Ce/Ce* is more than 1for the relatively unaltered and most altered samples. The ratio of (La/Yb) n indicated that the depletion of HREE in altered samples is more than LREE, and LREE enrichment can increase this ratio. The lower ratio of (Tb/Yb) n in altered than unaltered samples indicate less depletion of HREE relative to MREE. Considering the distribution pattern of REE’s in alteration zones, it seems that the behavior of elements are controlled by pH, T & P changes, Eh, preferred absorption by clayey and iron oxide minerals and ligands frequency including SO2-4 , PO4+3 , CI-, F-, CO2-3 .
اسدی، ن.، همکاران، 1389. بررسي ويژگي¬هاي دگرساني در محدوده آبترش-يوزباشي چاي و تحليل رفتار ژئوشيميايي عناصر(اصلي و كمياب) در محيط دگرساني، پترولوژي، سال اول، شماره سوم، 28-11 .
باباخانی، ع.و لسکویه، ج.، دیو.، 1369. شرح نقشه زمین¬شناسی چهارگوش اهر، 1:250000، سازمان زمین¬شناسی و اکتشافات معدنی کشور.
حسین زاده، م.ر.، مغفوری، س.، موید، م. و فرید اصل، و.، 1395. معرفی کانسار مس ماری بهعنوان یک ذخیره چینه کران نوع مانتو در پهنه طارم، شمال غرب ایران، فصلنامه زمینشناسی ایران، 10، 38، 17-37.
ظفرزاده، م.، موسیوند، ف.، رمضانی اومالی، ر. و مهدوی، ا.، 1401. الگوی تشکیل کانسار دو چیله، شرق میامی؛ بر پایه شواهد زمینشناسی، کانیشناسی و ژئوشیمیایی، فصلنامه زمین نشناسی ایران، 16 ، 64 ، 1-15.
قدیمزاده، ح.، مهرپرتو، م. و محمدی، ب.،1382. پروژه اکتشافات نیمه تفصیلی-تفضیلی طلا در محدوده اکتشافی صفی خانلو-نقدوز (جنوب شرق اهر)، سازمان زمینشناسی و اکتشاف معدنی تبریز.
قدیمزاده، ح.، مهرپرتو، م. و محمدی، ب.، 1383. زايش طلا در محدوده اكتشافي صفي خانلو-نقدوز (جنوب خاوري اهر)، هشتمین همایش انجمن زمینشناسی ایران.
مغفوری، س.، موحدنیا، م. و حسین زاده، م.ر.، 1398. زمینشناسی، ژئوشیمی و الگوی تشکیل کانه زایی آهن در توالی آتشفشانی-رسوبی ژوراسیک کانسار داش آغل، شمال شرق بوکان، پهنه سنندج-سیرجان، فصلنامه زمینشناسی ایران، 13، 50، 75ـ 88
مهدوی، م.، امینی فضل، ع.، علوی تهرانی، ن.، 1356. نقشه زمینشناسی 100000/1، سازمان زمینشناسی کشور.
نوروزی، ا. و مهرپرتو، م.، 1384. بررسی تیپ ژنتیکی و کانی¬سازی ذخیره طلای اپی¬ترمال واقع در رگه سیلیسی شماره 3 روستای زاگلیگ- اهر، بیست و چهارمین گردهمایی علوم زمین، سازمان زمین¬شناسی و اکتشافات معدنی کشور.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P. and Meyer,P., 2011. Zagros orogeny: a subduction dominated process, Geological Magazine.:1 - 34.
Arslan M., Kadir S., Abdioglu E. and Kolayli H., 2003. Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks Northern Main, Economic Geology 11 391-415.
Barnett, M. jarding, P.M., Brook, S. C. and Selim. H. M., 2000. Adsorption and transport of U (VI) in subsurfsce Media. Soil Science Socirty of American Journal 68, 908-914.
Dill H., Bosse R., Henning H. and Fricke A, 1997. Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of northwestern Peru. Mineralium Deposita, 32, 149-163.
Fulignati, P., Gioncada, A. and Sbrana, A., 1999. Rareelement (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy), Journal of Volcanology and Geothermal Research, 88 325-342.
Gouveia, M. A., M. I. Prudencio, M. O. Figtueiredo, L. C. J. Pereira, J. C. Waerrnborgh, I. Morgado, T. Pena, and A. Lopes, 1993. Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal [J]: Chemical Geolology, 107, 293–296.
Henderson P, 1984. Rare earth element geochemistry. Elsevier, Amsterdam, 510.
John, T., Kelmed. R., Carl, J. G. and Schonberg. D. G., 2008. Trace element mobilization in slab due to non steady- state fluid rock interaction: Constrations formation eclogite- Facies transport Vein in bluechist (Tianshan, China). Lithos 10, 31-24.
Karakaya N., 2009. REE and HFS element behaviour in the alteration facies of the ErenlerDaglVolcanics (Konya, Turkey) and kaoliniteoccurrence", Journal of Geochemical Exploration 101 185-208.
Laufer F., Yariv S., Steinberg M., 1984. The adsorption of quadrivalent cerium by kaolinite, Clay Minerals 19. 137-149.
Maiza P. J., Pieroni D. and Marfil S. A., 2003. Geochemistry of hydrothermal kaolins in the SE area of Los Menucos, Province of Rlo Negro, Argentina", In: Dominguez, E. A., Mas, G. R., Cravero, F. (Eds.), 2001, A Clay Odyssey. Elsevier, Amsterdam 123-130.
Maynard, J.B., 1983. Geochemistry of sedimentary ore deposits, Springer 305.
Muchangos, A. C., 2006. The mobility of rare earth and other elements in process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambigue), Journal of Geochemical Exploration, 88 300-303.
Mutakyahwa, M. K. D., Ikingura, J. R. and Mruima, A. H., 2000. Geology and geochemistry of bauxite deposits in Lushoto district, Usambara Vill Marie Quebe, Canada. Geochimica et Cosmochimica Acta 64,2199-2220.
Nessbitt, H. W. and Young, G. M. 1984. Early proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature 299: 715-717.
Panahi A., Young G.M. and Rainbird R.H., 2000. Behavior of major and trace elements including REE during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada", Geochimica et Cosmochimica Acta 64 2199–2220.
Plank, T. and Langmuir, C. H., 1988. The chemical composition of subducting sediment And its consequence for the crust and mantle. Chemical Geology 145,325-394.
Rollinson, H.R., 1993. Using geochemical data: Evaluation, presentation, interpretation, Longman Scientific and Technical, London. Şengör, A.M.C., Görür, N. & Saroglu, F., 1985. “Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: Biddle T.R., Christie-Blick N. (Eds.), Strike-slip Deformation, Basin formation and Sedimentation. Soc. Econ. Paleontol. Min. Spec. Publ., 37: 227-264.
Salvis., Williams-Jones A. E., 1996. The role of hydrothermal processes in concentrating highfield strength elements in the Strange Lake peralkaline complex, northeastern Canada", Geochimica et CosmochimicaActa 60 1917-1932.
Shelley, D., 1993. Igneous and metamorphic rocks under the microscope, Chapman and Hall.
Taboada. T., Cortizas, A. M., Gscia, C. and Garcia-Rodeja, F., 2006. U and Thweathering and pedogenetic profile devovloped on granitic rock form NW Spain Science of the total Environmental, 356,.192-206.
Taunton A. E., Welch S. A. and Banfield J. F., 2000. Geomicrobiological controls on light rare earth element, Y and Ba distribution during granite weathering and soil formation", Journal of Alloys and Compounds 303-304 30-36.
Van der Weijden, C. H. and R. D. Van der Weijden, 1995. Mobility of major, minor and some redox-sensitive trace elements and rare earth elements during weathering of four granitoids in central Portugal [J]: Chemical Geolology 125, 149–168.
Wood, D. A., 2006. Rare element systematic of acidic maters from the Taupo volcanic zone Newzealand Journal of Geochemical exploration, 99,424-427.