غرق شدن ناگهانی پلاتفرم کربناتۀ کرتاسۀ پسین در حوضۀ رسوبی زاگرس مرکزی: مطالعۀ موردی از عضو شیلی لافان در یکی از میادین نفتی دشت آبادان، جنوب غربی ایران
محورهای موضوعی :مریم کیا نی فرد 1 , علی حسین جلیلیان 2 * , ناصر ارزانی 3
1 - دانشگاه پیام نور اصفهان
2 - دانشگاه پیام نور
3 - دانشگاه پیام نور
کلید واژه: غرق شدن پلاتفرم, کرتاسۀ پسین, عضو لافان, زاگرس مرکزی, دشت آبادان,
چکیده مقاله :
پیشروی سریع آب دریاها و غرق شدن پلاتفرمهای کربناته یکی از رویدادهای مهم زمینشناسی کرتاسۀ پسین بعد از ناپیوستگی جهانی تورونین است. در بخشهای مرکزی و شرقی حوضۀ رسوبی زاگرس، نهشتههای حاصل از پیشروی دریای کرتاسۀ پسین بر روی سازند سروک با نام عضو لافان شناخته شدهاند که متشکل از رسوبات شیلی همراه با لایههای نازک آهک رسی میباشد که در بعضی از میدانهای نفتی جنوب ایران، سنگپوش مخزن سازند سروک است. با استناد به جایگاه چینهنگاری عضو لافان در میان سازندهای سروک و ایلام و حضور زون زیستی Charophytes-Ostracods در این عضو، میتوان سن کنیاسین را برای آن در نظر گرفت و از این نظر با سازند شیلی سورگاه در ناحیه لرستان همارز دانست. بهمنظور آگاهی از رویدادهای کرتاسۀ پسین در جنوب زاگرس مرکزی، بهخصوص مطالعه شواهد تغییرات سطح آب دریا، دادههای مربوط به عضو لافان در دو چاه از میدان نفتی آزادگان در دشت آبادان مورد بررسی قرار میگیرد. در مطالعۀ نمونهها و پتروگرافی این واحد سنگچینهای، یک رخسارۀ شیلی و دو ریزرخسارۀ کربناته از نوع مادستون تا وکستون کاروفیتدار با بایوکلاست و وکستون فرامینیفر پلانکتونیکدار با بایوکلاست شناخته شدهاند. این ریزرخسارهها گواه نهشته شدن مجموعۀ رسوبات عضو لافان در محیطهای متفاوتی از نوع حدواسط لبشور و بخشهای عمیقتر دریا هستند. نتایج این تحقیق نشان داد که با پایین افتادن سطح آب دریا در زمان تورونین، بخشهایی از پلاتفرم کربناتۀ سازند سروک از آب خارج شد و امکان فعال شدن آبراههها در حواشی آن فراهم شد. با پیشروی دریای کرتاسۀ پسین بر روی سطح فرسایش یافتۀ متشکل از کربناتهای سنومانین-تورونین و غرق شدن کانالهای حاصل از ورود آبراهههای ساحلی، محیطهای حدواسط از جمله خلیجهای دهانهای بهوجود آمدند. با اختلاط آبهای شیرین و شور در این خلیجها، رسوبات بخش پایینی عضو لافان در زمانی محدود بر جای گذاشته شدند که با افزایش سریع عمق آب ناشی از بالا آمدن سطح آب دریا و فرونشینی حوضه توسط رخسارههای مربوط به بخش عمیقتر دریای باز (شیل پلاژیک) پوشانده شدهاند. این تغییر ناگهانی و بدون واسطۀ نهشتههای محیط حدواسط به رخسارههای بخش عمیقتر دریا نشانۀ غرق شدن پلاتفرم کربناتۀ مناطق مرکزی زاگرس در کنیاسین است. شواهدی همچون قاعدۀ فرسایشی، توالی بهسمت بالا عمیقشونده، فراوانی رخسارۀ مادستونی (شیل) و پیوستگی و پوشیده شدن با کربناتهای دریایی نیز مؤید چنین نتیجهای است. بررسی تغییرات عمودی ریزرخسارهها و شدت پرتو گامای نمودار چاهپیمایی بُرشهای مورد مطالعه نشان میدهد که عضو لافان، دسته رخسارههای تراز پایین ، دسته رخسارههای پیشرونده و سطح حداکثر غرقشدگی یک سکانس رسوبی رده سوم (5-5/0 میلیون سال) را در بر میگیرد. این سکانس با ناپیوستگی فرسایشی آغاز و پس از تشکیل رسوبات خلیج دهانهای و بخشهای عمیقتر دریا توسط بخش زیرین کربناتهای سازند ایلام (سانتونین) بهعنوان دسته رخسارههای تراز بالا تکمیل شدهاست.
Rapid sea-level rise and drowning of carbonate platforms is one of the important geological events in the Late Cretaceous and after the Turonian global unconformity. This transgression in central and western Zagros Basin is represented as shaley sediments of the Laffan Member, which were deposited over the Sarvak Formation. The stratigraphic position and the occurrence of the Charophytes-Ostracods biozone indicate the late Cretaceous, Coniacian age for the Laffan Member, which is stratigraphically equivalent to the Surgah Formation in Lurestan area in the west of Iran. The Laffan Member is mainly shaley in lithology with intercalations of thin-bedded argillaceous limestones and is the caprock over the reservoir of the Sarvak Formation in some oil fields in SW Zagros. Microfacies, sedimentary environments, biostratigraphy and sequence stratigraphy of the Laffan Member in two wells of Azadegan Oil Field located in Abadan Plain were investigated. Petrographic data revealed the presence of a shaley facies and two carbonate microfacies including charophitic mudstone-wackestone to bioclastic planktonic foraminiferal wackestone. These microfacies were deposited in transitional-brackish to deep marine environments. Marine transgression over the eroded palaeotopography of the Cenomanian-Toronian carbonates resulted in estuaries as channels and transitional environments. In these estuaries, mixture of the fresh and marine waters resulted in deposition of the lower parts of the Laffan Member and graded upward into the marine deposits of the upper parts of this Member.The sudden change of shallow-transitional facies to deep marine sediments in the Laffan Member indicates drowning of the carbonate platform of central Zagros Basin in Coniacian. The evidence like erosional base, deepening-upward sequences, frequency of mudstone facies (shale) and continuity with marine carbonates confirm this conclusion. Investigation of vertical changes of the microfacies with gama-ray well log data indicate the Laffan Member is part of a sequence as lowstand deposits (LST), transgressive deposits (TST) which grade upwards into maximum flooding surface (MFS) and high-stand deposits (HST) which comprise a third-order sequence. This sequence begins with an erosional unconformity and follows up with the formation of the estuary and deep sea sediments. The latter package is covered with the carbonate sediments of the lower part of the Ilam Formation (Santonian) which represents carbonate platform deposits of high-stand system track (HST).
آقانباتی، ع.، 1383. زمینشناسی ایران، انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور، 708.
خسروتهرانی، خ.، 1386. رخسارههای میکروسکوپی (میکروفاسیسها)، انتشارات دانشگاه تهران، جلد 1، 498.
سپهوند، س.، 1390. گزارش تکمیلی زمینشناسی چاه اکتشافی آزادگان-10، مدیریت اکتشاف شرکت ملی نفت ایران، 48.
غبیشاوی، ع.، 1387. چینهشناسی سازندهای سروک و ایلام در تاقدیس بنگستان و میدان پارسی. پایاننامۀ دکتری، دانشکده علوم دانشگاه اصفهان، 195.
مطیعی، ه.، 1372. چینهشناسی زاگرس: طرح تدوین کتاب، سازمان زمینشناسی و اکتشاف معدنی کشور، 536.
موحد، ب.، 1389. مبانی چاهپیمایی، انتشارات دانشگاه صنعتی امیرکبیر، 330.
هنرمند، ج. و مداحی،ا.، 1390. ارتباط رخسارههای رسوبی با گسترش فرآیندهای دیاژنزی و کیفیت مخزنی بخش بالایی سازند سروک در یکی از میادین بزرگ نفتی، جنوب غربی ایران. پژوهش¬های چینهنگاری و رسوبشناسی. 42، 115-98.
Abdollahie Fard, I., Braathen, A., Mokhtari, M. and Alavi, S.A., 2006. Interaction of the Zagros Fold–Thrust Belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Petroleum GeoScience, 12, 347-362.
Abdollahie-Fard, I., Mokhtari, M. and Alavi, S.A., 2007. The main structural elements of the Abadan Plain (SW Iran) and the N. Persian Gulf based on the integrated geophysical data. Geophysics Researches Abstract, 111-146.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and proforland evolution. American Journal of Sciences, 304, 1-20.
Alavi, M., 2007. Structures of the Zagros fold–thrust belt in Iran. American Journal of Science, 307, 1064–1095.
Alsharhan, A.S. and Nairn, A.E.M., 1997. Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, Amsterdam, 843.
Alsharhan, A.S. and Nairn, A.E.M., 2003. Sedimentary Basins and Petroleum Geology of the Middle East (Second Impression). Elsevier, Amsterdam, 940.
Assadi, A., Honarmand, J., Moallemi, S.A. and Abdollahie-Fard, I., 2016. Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies, 62, 22.
Athersuch, J., 1994. The Biostratigraphic Significance of Cretaceous Ostracods from the Arabian Gulf. In M.D. Simmons (Ed.), Micropalaeontology and Hydrocarbon Exploration in the Middle East. Chapman and Hall, 253-271.
Beiranvand, B., Ahmadi, A. and Sharafodin, M., 2007. Mapping and classifying flow units in the upper part of the mid-Cretaceous Sarvak formation (Western Dezful Embayment, SWIran) based on a determination of the reservoir types. Journal of Petroleum Geology, 30, 357–373.
Berberian, M., 1995. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241, 193-224.
Berger, S. and Kaever, J., 1992. Dasycladales: An illustrated monograph of a fascinating algal order. Thieme, Stuttgart, 247.
Boggs, S., 2009. Petrology of Sedimentary Rocks. Cambridge University Press, 600.
Bolz, H., 1977. Reappraisal of biozonation on the Bangestan Group (Late Aptian-Early Companian) of south west Iran. OilService Company of Iran, Report NO. 1252, Tehran, 112, (unpublished).
Bourgeoist, F., 1969. Kuh-e-Bangestan, a model for Cretaceous structure in Iran: Iranian Oil Operating Companies, Geological and Exploration Division, Report 89, 76.
Brandano, M., Corda, L., Tomassetti, L. and Tagliavento, M., 2016. Frequency analysis across the drowning of a lower Jurassic Carbonate Platform: the Calcare Massiccio formation (Apennines, Italy). Marine Petroleum Geology, 78, 606–620.
Bucur, I.I. and Sasaran, E., 2005. Relationship between algae and environment: an Early Cretaceous case study, Trasc ˘au Mountains, Romania. Facies, 51, 274–286.
Burchette, T.P. and Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79, 3-57.
Burchette, T.P., 1993. Mishrif Formation (Cenomanian–Turonian), southern Arabian Gulf: Carbonate platform growth along a cratonic basin margin. In: Simo J. A. T. Scott R.W. and Masse J. P. (Eds.), Cretaceous carbonate platforms. American Association of Petroleum Geologists Memoir, 56, 185–199.
Catuneanu, O., Martins, N.M.A. and Ericsson, P., 2012. Sequence stratigraphic framework and application to the Precambrian. Marine Petroleum Geology, 33, 26-33.
Dalrymple, R.W., Zaitlin, B.A. and Boyd, R., 1992. A conceptual model of estuarine sedimentation. Journal of Sedimentary Petrology, 62, 1130-1146.
De Vries, J. and Archibald, J.M., 2018. Plant evolution: landmarks on the path to terrestrial life. The New Phytologist, 217, 4, 1428–1434.
Dunham, R.J., 1962. Classification of carbonate rocks according to their depositional texture. In: Ham W. E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir, 1, 108-121.
Einsele, G., 2000. Sedimentary Basins Evolution, Facies, and Sediment Budget (2nd Edition). Springer-Verlag, Berlin, 628.
Esrafili-Dizaji, B. and Rahimpour-Bonab, H. 2019. Carbonate reservoir rocks at giant oil and gas fields in sw Iran and the adjacent offshore: a review of stratigraphic occurrence. Journal of Petroleum Geology, 42, 4, 343-370
Flugel, E., 2010. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer-Verlag, Berlin, 984.
Ghabeishavi, A., Vaziri-Moghaddam, H., Taheri, A. and Taati, F., 2010. Microfacies and depositional environment of the Cenomanian of the Bangestan anticline, SW Iran. Journal of Asian Earth Science, 37, 275–285.
Ghazban, F., 2007. Petroleum Geology of the Persian Gulf. Tehran University Press, 707.
Golonka, J. and Kiessling, W., 2002. Phanerozoic Time Scale and definition of time slices. Society of Economic Paleontologist and Mineralogist, Special Publication, 72, 11-20.
Hashemi, S., Javaherian, A., Ataee-pour, M., Tahmasebi, P. and Khoshhal, H., 2014. Channel characterization using multiple-point geostatistics, neural network, and modern analogy: a case study from a carbonate reservoir, southwest Iran. Journal of Application Geophysics, 111, 47-58.
Hassanzadeh Azar, J.M., Nabi-Bidhendi, A., Javaherian, A. and Pishvaie, M.R., 2009. Integrated seismic attributes to characterize a widely distributed carbonate clastic deposit system in Khuzestan Province, SW Iran. Journal of Geophysics and Engineering, 6, 162-171.
Heydari, E., 2008. Tectonic versus eustatic control on supersequences of the Zagros Mountain of Iran. Tectonophysics, 451, 56-70.
Hollis, C., 2011. Diagenetic controls on reservoir properties ofcarbonate successions within the Albian–Turonian of the Arabian Plate. Petroleum Geoscience, 17, 3, 223–241.
Hollis, C. and Sharp, I., 2011. Albian-Cenomanian-Turonian carbonate-siliciclastic systems of the Arabian Plate: advances in diagenesis, structure and reservoir modeling. Petroleum Geoscience, 17, 207-209.
Honarmand, J., Nemati, M. and Monibi, S., 2009. Geological reservoir study of the Sarvak and Gadvan Formations in the Azadegan and Juffair Fields, wells AZN-8 and JR-4. Research Institute of Petroleum Industry, Unpublished Report, 174.
James, G.A. and Wynd, J.G., 1965. Stratigraphic nomenclature of Iranian oil consortium agreement area. American Association of Petroleum Geologists Bulletin, 49, 12, 2182-2245.
Kelman, R., Feist, M., Trewin, N.H. and Hass, H., 2003. Charophyte algae from the Rhynie chert. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94, 4, 445–455.
Khalili, M., 1974. The biostratigraphic synthesis of Bangestan Group in southwest Iran: Iranian Oil Operating Companies, Geological and Exploration Division, Report 1219, 76.
Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F. and De Clerck, O., 2012. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31, 1–46.
Marino, M. and Santantonio, M., 2010. Understanding the geological record of carbonate platform drowning across riftedTethyan margins: Examples from the Lower Jurassic of the Apennines andSicily (Italy). Sedimentary Geology, 225, 116–137.
Martinez, J.I. and Hernandez, R.R., 1994. Evolution and drowning of the late cretaceous Venezuelan carbonateplatform. Journal of South American Earth Sciences, 5, 2, 197-210.
Mutti, M. and Hallock, P., 2003. Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. International Journal of Earth Science, 92, 4, 465-475.
Nazeer, A., Abbasi, SH.A.and Solangi, S.H., 2016. Sedimentary facies interpretation of Gamma Ray (GR) log as basic well logs in Central and Lower Indus Basin of Pakistan. Geodesy and Geodynamics, 7, 6, 432-443.
Nichols, G., 2009. Sedimentology and Stratigraphy. Wiley-Blackwell, 419.
Nichols, M.M. and Biggs, R.B., 1985. Estuaries. In: Davis J. R. A. (Ed). Coastal Sedimentary Environments. Springer-Verlag, 77-173.
Piryaei, A., Reijmer, J., Van Buchem, F., Yazdi-Moghadam, M., Sadouni, J. and Danelian, T., 2010. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran). In: Leturmy P. Robin C. (eds.) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geology Society, London, Special publication, 330, 211–251.
Piryaei, A., Reijmer, J., Borgomano, J. and Van Buchem, F., 2011. Late Cretaceous tectonic and sedimentary evolution of the Bandar Abbas area, Fars region, southern Iran. Journal Petroleum Geology, 34, 157–180.
Prothero, D.R. and Schwab, F., 2014. Sedimentary geology (Third edition). W. H. Freeman and Company, 604.
Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., Omidvar, M., Enayati-Bidgoli, A.H., Sonei, R., Sajjadi, F., Amiri-Bakhtyar, H., Arzani, N. and Izadi-Mazidi, E., 2013. Paleo-exposure surfaces in Cenomanian-Santonian carbonate reservoirs in the Dezful embayment, SW Iran. Journal of Petroleum Geology, 36, 335-362.
Razin, P., Taati, F. and Van Buchem, F., 2010. Sequence stratigraphy of Cenomanian–Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate. In: Van Buchem F. Gerdes K. D. and Esteban M. (Eds.), Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East-Stratigraphic and Diagenetic Reference Models. Geology Society, London, Special Publication, 329, 187–218.
Reinson, G.E., 1992. Transgressive barrier island and estuarine systems. In: Walker R. G. and James N. P. (Eds). Facies models response to sea level change. Geological Association of Canada, 179–194.
Schlager, w., Reijmer, J.J.G. and Droxler, A., 1994. Highstand shedding of carbonate platforms. Journal of Sedimentary Research, 64, 270-281.
Schlager, W., 2005. Carbonate sedimentology and sequence stratigraphy. Society for Sedimentary Geology, 8, 200.
Sepehr, M. and Cosgrove, J.W., 2004. Structural framework of the Zagros fold-thrust belt, Iran. Marine and Petroleum Geology, 21, 829-843.
Setudehnia, A., 1978. The Mesozoic sequence in southwest Iran and adjacent areas. Journal of Petroleum Geology, 1, 3–42.
Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D. and Simmon, M.D., 2001. Arabian plate sequence stratigraphy. GeoArabia, Special publication, 2. Oriental press, Manama Bahrian, 371.
Simmons, M., Sharland, P.R., Casey, D.M., Davies, R.B. and Sutcliffe, O.E., 2007. Arabian Plate sequence Stratigraphy: Potential implication for global chronostratigraphy. Geo Arabia, 12, 4, 101–130.
Tucker, M.E., 2003. Sedimentary Rocks in the Field Department of Geological Sciences. University of Durham, UK, 252.
Van Buchem, F., Simmons, M.D., Droste, J. and Davies, R.B., 2011. Late Aptian to Turonian stratigraphy of the eastern Arabian Plate-depositional sequences and lithostratigraphic nomenclature. Petroleum Geoscience, 3, 17, 211–222.
Vincent, B., Van Buchem, F., Bulot, L., Jalali, M., Swennen, R., Hosseini, A. and Baghbani, D., 2015. Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in coastal Fars (SW Iran). Marine Petroleum Geology, 63, 46-67.
Walker, R.G. and James, N.P., 1992. Facies models response to sea level changes. Geological Association of Canada, 409.
Wynd, A.G., 1965. Biofacies of the Iranian Oil Consortium Agreement area: Iranian Oil Operating Companies, Geological and Exploration Division, Report 1082, 89.
Ziegler, M.A., 2001. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6, 445–504.