تخمین ارتفاع سطح LNAPL در آبخوانهای آلوده به نفت با استفاده از برنامهنویسی بیان ژن (GEP)، سیستم استنتاج فازی (ANFIS) و روش رگرسیون چند متغیره (MLR)
محورهای موضوعی :فاطمه ابراهیمی 1 * , محمد نخعي 2 , حميدرضا ناصري 3 , کمال خدایی 4
1 - دانشکده علوم زمین، دانشگاه خوارزمی، تهران
2 - دانشکده علوم زمین، دانشگاه خوارزمی، تهران
3 - دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران
4 - پژوهشکده علوم پایه کاربردی جهاد دانشگاهی
کلید واژه: نوسانات LNAPL , برنامهنویسی بیان ژن, سیستم استنتاج تطبیقی فازی, رگرسیون چند متغیره,
چکیده مقاله :
یکی از مهمترین نگرانیها در آبخوانهای مجاور به تاسیسات نفتی، نشت LNAPL ها میباشد. بازیافت LNAPLها همواره مشکل و پرهزینه است. نخستین مرحله در برنامهریزی چنین سیستمهایی، تعیین اهداف طراحی میباشد، اغلب بیشینهسازی برداشت آلاینده، و کمینه سازی هزینه بهعنوان مهمترین اهداف طراحی در نظر گرفته میشوند. شناسایی ضخامت LNAPL و نوسانات آن میتواند تعیینکننده روش بازیافت، بیشینهسازی برداشت و کاهش هزینه آن شود. در این مطالعه از سه روش برنامهنویسی بیان ژن ، سیستم استنتاج تطبیقی فازی ، و رگرسیون چند متغیره ، برای تخمین و پیشبینی ارتفاع سطح LNAPL استفاده شده است. متغیرهای ورودی شامل ارتفاع سطح آب زیرزمینی و نرخ تخلیه LNAPL و متغیر خروجی ارتفاع سطح LNAPL میباشد. نتایج اجرای سه مدل توسط پارامترهای آماری مورد تحلیل و بررسی قرار گرفت و مشخص شد که برنامهنویسی بیان ژن دارای نتایج بهتری میباشد و میتواند بهطور موفقیتآمیزی در پیشبینی نوسانات سطح LNAPL در فرایندههای Recovery مورد استفاده قرار گیرد. همچنین توسط مدل GEP یک معادله برای پیشبینی سطح LNAPL ارائه شد که میتوان آن را در سر چاه برای پیشبینی ارتفاع سطح LNAPL استفاده کرد.
One of the main concerns in the aquifers adjacent to oil facilities is the leakage of LNAPLs. Since remediation processes costly and time consuming, so the first step in these systems is determining design goals. Often the most important goal of these systems is to maximize pollutant removal and minimize the cost. Identifying the thickness of LNAPL and its fluctuations can determine the type of recovery method and thus can be effective on the amount of removal and the cost of the implementation. In this study, three methods of gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS) and multivariate linear regression (MLR) were used to estimate and predict the LNAPL level. Input variables are groundwater level elevation and discharge rate of LNAPL and the output variable is the LNAPL level elevation. The results of the three models were analyzed by statistical parameters and it was determined that GEP technique has better results and could be used successfully in predicting LNAPL level fluctuations in recovery processes. Also, the GEP model provides an equation for predicting the LNAPL level that can be used in the field to predict the elevation of the LNAPL level.
ناصری، ح. ر.، عسگری، ف.، خدایی، ک. و علیجانی، ف.، 1399. تأثیر آبیاری غرقابی و قطرهای هوشمند بر نوسانات تراز سطح آب زیرزمینی با استفاده از مدل فیزیکی. فصلنامه زمینشناسی ایران، 53، 14 .
میر عربی، ع.، ناصری، ح. ر.، نخعی، م . و علیجانی، ف.، 1398. بررسی کارایی مدل هیبریدی هالت-وینترز موجکی (WHW)در شبیهسازی تراز سطح ایستابی آبخوان ساحلی ارومیه. فصلنامه زمینشناسی ایران، 49، 18.
Abraham, A., 2005. Adaptation of Fuzzy Inference System Using Neural Learning, in Nedjah, Nadia; de Macedo Mourelle, Luiza, Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing, 181, Germany: Springer Verlag, 53–83, doi: 10. 1007/ 11339366, 3.
Adamowski, J. and Chan, H. F., 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407, 28–40.
Al-Hmouz, A ., Shen, J ., Al-Hmouz, R. and Yan, J., 2012. Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning. IEEE Transactions on Learning Technologies 5, 3, 226-237.
Aytek, A. and Alp, M., 2008. An application of artificial intelligence for rainfall runoff modeling. Journal of Earth System Science. 117,2, 145-155.
Azari ,T. and Samani, N., 2018. Modeling the Neuman’s well function by an artificial neural network for the determination of unconfined aquifer parameters. 22, 4, 1135–1148.
Cimen, M. and Kisi, O., 2009. Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. Journal of Hydrology, 378, 253-262.
Coppola, E., Szidarovszky, F., Davis, D., Spayad, S., Poulton, M. and Roman, E., 2007. Multi objective analysis of a public wellfield using artificial neural networks. Ground Water 45,1, 53–61.
Coppola, Jr., Emery, A., Rana, Anthony, J., Poulton, Mary. M., Szidarovszky, F. and Uhi, V, W., 2005. A neural network model for predicting aquifer water level elevations. Groundwater. 43, 2, 231-241.
Danandeh Mehr, A., Kahya, E. and Yerdelen, C., 2014. Linear genetic programming application for successive-station monthly streamflow prediction. Computers and Geosciences, 70, 63-72.
Elzwayie, A., El-shafie, A., Yaseen, Zaher. M., Afan, H. A. and Falah Allawi, M., 2016. RBFNN-based model for heavy metal prediction for different climatic and pollution conditions. Neural Computing and Applications. 28, 8, 1991–2003.
Emamgholizadeh, S., Moslemi, Kh., Karami, Gh.H., 2014. Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) Water Resour Manage. DOI 10.1007/s11269-014-0810-0.
Ferreira, C., 2001a. Gene expression programming in problem solving. In: Sixth Online World Conference on Soft Computing in Industrial Applications (invited tutorial), Springer, London, 635-653, https://doi.org/10.1007/978-1-4471-0123-9-54.
Ferreira, C., 2001b. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13,2, 87–129.
Ferreira, C., 2006.Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Berling, Heidelberg New York, 478.
Ghorbani, M. A, Deo, Ravinesh, C., Karimi, V., Yaseen, Zaher. M. and Terzi, Ozlem., 2017. Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment . 32, 6, 1683–1697.
Guldal, V. and Tongal, H., 2010. Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in E girdir Lake Level Forecasting. Water Resour Manage, 24, 105–128.
Hawthorne, J.M., 2011. Diagnostic Gauge Plots, Applied NAPL Science Review, 1 http://www.icontact-archive.com/IXYNsGudxSsIUD6HuogSpblft2mtIAJM .
Jang, J.S.R., 1991. Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm. Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July, 14–19, 2, 762–767.
Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23,3, 665–685.
Karimi, S., Shiri, J., Kisi, O. and Makarynskyy, O., 2012. Forecasting Water Level Fluctuations of Urmieh Lake using Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System. International Journal of Ocean and Climate Systems 3,109-125.
Kisi, O., Shiri, J. and Nikoofar, B., 2012. Forecasting daily lake levels using artificial intelligence approaches. Computers & Geosciences 41,169–180.
Mamdani, E, H. and Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7,1, 1–13.
Mpallas, L., Tzimopoulos, C. and Evangelides, C., 2011. Comparison between neural networks and adaptive neuro-fuzzy inference system in modeling Lake Kerkini water level fluctuation lake management using Artificial Intelligence. Journal of Environmental Science and Technology 4, 366-376.
Nadim, F., Hoag George, E., Liu, Sh., Carley Robert, J. and Zack, P., 2000. Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. Journal of Petroleum Science and Engineering. 26, 1–4, 169-178.
Nayak. Purna, C., Satyaji Rao, Y.R. and Sudheer, K. P., 2006. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management. 20, 1,77–90.
Nazari, A., 2012. Prediction performance of PEM fuel cells by gene expression programming. International Journal Hydrogen Energy 37, 18972– 18980.
Noori, R., Khakpour, A., Omidvar, B. and Farokhnia, A., 2010. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Systems with Applications 37, 5856–5862.
Ozbek, A., Unsal, M. and Dikec, A., 2013. Estimating uniaxial com pressive strength of rocks using genetic expression programming. Journal of Rock Mechanics Geotechnical Engineering, 5,325–329.
Sanikhani, H., Deo, Ravinesh, C., Yaseen, Zaher .M., Eray, O. and Kisi, O., 2018. Non-tuned data intelligent model for soil temperature estimation: A new approach. Geoderma. 330, 52-64.
Shiri, J., Kisi, O., Yoon, H., Lee, K. K. and Hossein Nazemi, A., 2013.Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques. Computers and Geosciences. 56, 32-44.
Solomatine, D., See, L. and Abrahart, R., 2009. Data-Driven Modelling: Concepts, Approaches and Experiences.Practical Hydroinformatics. Water Science and Technology Library, 68, 17-30 Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-79881-1-2.
Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on System, Man and Cybernetics 15,1, 116–132.
Tiri, A., Belkhiri, L. and Mouni, L., 2018. Evaluation of surface water quality for drinking purposes using fuzzy inference system. Groundwater for Sustainable Development. 6, 235-244.
Wang, W. C., Chau, K. W., Cheng, C. T. and Qiu, L., 2009. A comparison of Performance of several artificial intelligence methods for forecasting monthly Discharge time series. Journal of Hydrology, 374, 294–306.
Yaseen, Zaher .M., Ebtehaj, Isa., Bonakdari, H., Deo, R. C., Danandeh Mehr, A., Wan Mohtar, W. H. M., Diopf, L., El-shafie, A., Singhi, Vijay, P., 2017. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. 554, 263-276.
Yaseen, Zaher. M., El-shafie, A., J, O., H.A. and Sayl, K.N., 2015. Artificial Intelligence based models for stream-flow forecasting. Journal of Hydrology, doi: http://dx.doi.org/10.1016/ j.jhydrol.,2015.10.038.
Yaseen, Zaher. M., Kisi, O. and Demir ,V., 2016b. Enhancing Long-Term Streamflow Forecasting and Predicting using Periodicity Data Component: Application of Artificial Intelligence. Water Resources Management.30: 4125. https://doi.org/10.1007/s11269-016-1408-5.
Yaseen, Zaher. Mundher., Falah A, M., Yousif, A. A., Jaafar, O., Mohamad Hamzah, F . and El-Shafie, A., 2016a. Non-tuned machine learning approach for Hydrological time series forecasting. Neural Computing and Applications. 30, 5, 1479–1491.
Yoon, H., Jun, S., Hyun, Y., Bae, G. and Lee, K., 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology. 396, 1–2, 128-138.
Zaqoot, Hossam. A., Hamada, M. and Migdad, Sh., 2018. A Comparative Study of Ann for Predicting Nitrate Concentration in Groundwater Wells in the Southern Area of Gaza Strip. Applied Artificial Intelligence. 32, 7-8, 727-744.