ارتباط¬سنجی کانه¬زایی مس و ساختارها در منطقه علی¬آباد - دره¬زرشک با استفاده از داده¬های زیرسطحی ژئوتکنیکی و ژئوشیمیایی
محورهای موضوعی :مهدی رمضانی 1 , حجت اله صفری 2 * , غلامحسین شمعانیان 3 , همایون صفایی 4
1 - دانشگاه گلستان
2 - دانشگاه تربیت مدرس
3 - دانشگاه گلستان
4 - دانشگاه اصفهان
کلید واژه: ارتباط¬سنجی, کانه¬زایی مس, کانسارهای علی¬آباد- دره¬زرشک, معیار میزان کیفیت سنگ.,
چکیده مقاله :
برای ارتباط سنجی بین کانی زایی مس پورفیری و سیستم های گسلی، کانسارهای پورفیری علی آباد و پورفیری– اسکارن دره زرشک در كمربند ماگمایی اروميه– دختر انتخاب شدند. در این پژوهش سعی شد این ارتباط با استفاده از داده های سطحی و زیرسطحی (اطلاعات حاصل از حفاری های صورت گرفته در قالب اطلاعات ژئوتکنیکی و میزان عیار مس) در محل کانسارهای علی آباد و دره زرشک، روشن شود. نتایج این مطالعات نشان داد که کمربند های گسلشی که از طریق بررسی معیار میزان کیفیت سنگ (RQD) بهدستآمده انطباق به نسبت خوبی با گسل-هایی که از طریق مطالعات سطحی و روش های سنجش از دور بهدست آمده اند، دارند. همچنین در طول این پهنه های گسلیده عیار کانه زایی مس بالاتر می باشد، به این ترتیب، ارتباط کانه زایی و گسلش در منطقه اثبات می شود.
In order to find the relationship between porphyry copper depositions with faulting systems, the Aliabad porphyry and Darre Zereshk Porphyry- Skarn ores were selected as a case studies in Uramia- Dokhtar Magmatic Belt,. In this research, discovering this correlation procedure was performed by using surface and subsurface data (i.e. drilling data as geotechnical and Cu-percentage data) from Aliabad and Darre Zereshk mine districts. The results show that RQD criteria extracted from fault zones have a good correlation with surface faults which are identified by field investigations and Remote Sensing techniques. Also, the copper enriched was observed along fault zones and therefore, the relationship between porphyry copper deposits and fault zones is approved.
سازمان نقشهبرداری کشور، 1375. نقشه راه¬های ایران، مقیاس 1000000/1
Agard, P., Omrani, J. and Jolivet, L., 2011. Zagros orogeny: a subduction-dominated process, Geological Magazine, 148, 5–6, 692–725.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, 211–238.
Asghari, O. and Madani N., 2011. A new approach for the geological risk evaluation of coal resources through a geostatistical simulation, Arabian Journal of Geosciences, 7, 2, 839–839.
Berberian, M. and King G. C. P., 1981. Towards a paleogeography and Tectonic evolution of Iran, Canadian Journal of Earth Sciences, 18, 210-25.
Caine, J.S., Evans. J.P. and Forster, C.B., 1996. Fault zone architecture and permeability structure, Geology, 24, 1025–1028
Chester, F.M. and Logan, J.M., 1987. Composite planar fabric of gouge from the Punchbowl Fault, California, Journal of Structural Geology, 9, 621–634.
Chester, F.M., Evans, J.P. and Biegel, R.L., 1993. Internal structure and weakening mechanisms of the San Andreas fault, Journal of Geophysics Research, 98,771–786.
Deere, D.U., 1963. Technical description of rock cores for engineering purposes, Rock Mechanics Engineering Geology, 42, 397-441.
Deere, D.U. and Deere, D.W., 1988. The RQD index in practice, proceedings symposium on Rock Classification Purposes, ASTM Special Technical Publication, 984, 91-101.
Escuder Viruetea, J., Carbonellb, R., Martı’b, D. and Pe’rez-Estau’nb, A., 2003. 3D stochastic modeling and simulation of fault zones in the Albalá granitic pluton, SW Iberian Variscan Massif, Journal of Structural Geology, 25, 1487–1506.
Ghorbani, M., 2013. The Economic Geology of Iran. Mineral Deposits and Natural Resources, Springer Science Business Media Dordrecht, 581.
Wang, H., Xu, W., Shao, J. and Skoczylas, F., 2014. The gas permeability properties of low-permeability rock in the process of triaxial compression test, Mater. Lett., 116, 386–388.
Hezarkhani, A., 2006. Hydrothermal evolution of the Sarcheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions, Journal of Asian Earth Sciences, 28,4–6, 409–422.
Kloppenburg, A., Grocott J. and Hutchinson D., 2010. Structural Setting and Synplutonic Fault Kinematic of Cordilleran Cu-Au-Mo Porphyry Mineralization System, Bingham Mining District, Utah. Economic Geology, 105,743-761.
Le Dortz, K., Meyer, B., Sebrier, M., Braucher, R., Nazari, H., Benedetti, L., Fattahi, M., Bourles, D., Foroutan, M., Siame, L., Rashidi, A. and Bateman, M.D., 2011. Dating inset terraces and offset fans along the Dehshir Fault (Iran) combining cosmogenic and OSL methods, Geophysical Journal International, 185, 1147–1174.
Madani, M. and Asghari, O., 2012. Fault detection in 3D by sequential Gaussian simulation of Rock Quality Designation (RQD), Arabian Journal of Geosciences, DOI: 10.1007/s12517-012-0633-3.
Maghsoudi, M., Ghorashi, M. and Nezampour, M. R., 2012. Structural evidence of changes in tectonic regime from compressional stresses to compression-shear stress in southeast of the Gavkhuni (Khushab region), Journal of Earth, 24,197-212.
Mohajjel, M., Fergusson, C. L. and Sahandi, M. R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, eastern Iran, Journal of Asian Earth Sciences, 21, 397-412
Moritz, R., Ghazban, F. and Singer, B. S., 2006. Eocene gold ore formation at Muteh, Sanandaj- Sirjan tectonic zone, eastern Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogeny, Economic Geology, 101, 1497-1524.
Moshrefifar, M.R., Alavi, A. and Mohajjel, M., 2005. Separation of Paleostresses phases on heterogeneous fault-slip data in the Central part of Dehshir fault, Journal of Earth Science, 69, 64-73.
Meyer, B., Mouthereau, F., Lacombe, O. and Agard, P., 2006. Evidence of quaternary activity along the Dehshir Fault, Geophysical Journal International, 164, 192–201.
Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) deposit formation, Economic Geology, 98, 1515–1533.
Sheibi, M. and Esmaeili, D., 2010. Petrological and Geochemical evidences of Restite in Shirkuh Anatectic Granites, SW of Yazd, Iranian Crystallography and Mineralogy Journal, 18,1, 135-146.
Tabaei, M., Mehdizadeh, R. and Esmaeili, M., 2016. Stratigraphical evidences of the Qom- Zefreh fault system activity. Central Iran, Journal of Tethys, 4 ,1, 018-026.
Tosdal, R.M. and Richards, J.P., 2001. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits, Society of Economic Geology, 14, 157–181.
USGS., 2008. Preliminary model of porphyry Cu deposits, United States Geological Survey Report 2008–1321,62.
Walker, R. and Jackson, J., 2004. Active tectonics and late Cenozoic strain distribution in central and eastern Iran, Tectonics, 23, TC5010,doi:10.1029/2003TC001529.
Zahedi, A., Boomeri, M., Nakashima, K., Mackizadeh, A., Ban, M. and Lentz, D., 2014. Geochemical characteristics, origin, and evolution of ore‐forming fluids of the Khut Copper Skarn Deposit, West of Yazd in Central Iran, Journal of Resource Geology, 64,3,209–232.
Zarasvandi, A.R., 2004. Geology and genesis of the Darreh-Zerreshk and Ali-Abad copper deposits, Southwest of Yazd, based on fluid inclusion and isotope studies, Shiraz University, Iran, PhD Thesis, 280.
Zarasvandi, A.R., Liaghat,S. and Zanetilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran, International Geology Review, 47, 620-464.