Hydrochemical evaluation and qualitative deterioration assessment of Gorganrud River
Subject Areas :Mojtaba G.Mahmoodlu 1 * , Nader Jandaghi 2 , Maryam Sayadi 3
1 -
2 -
3 -
Keywords: Hydrochemical evolution, Water quality, Saturation index, Water quality classification, Gorganroud river.,
Abstract :
In this study, the hydrochemical evolution and qualitative deterioration of Gorganrud River water were investigated in a distance of approximately 100 km from the northern margin of the Alborz highlands to Gorgan Gulf. For this purpose, the analysis results of elven physicochemical parameters related to four hydrometric stations over a ten-year statistical period were used. Gibbs, Stiff, Piper, Durov diagrams as well as five saturation indices for carbonate, sulfate and chloride minerals were used to study the hydrochemical evolution of the river. Water quality changes in drinking (using Schoeller Diagram), agricultural (using Wilcox Diagram), and industrial (using corrosion indices) sectors along the Gorganrud River were also investigated. In this study, F test and hierarchical cluster analysis were used to analyze the variance of data and the number of factors affecting water hydrochemistry, respectively. The results showed that rock-water reaction, evaporation, and Gorgan Gulf saline water intrusion are the most important factors controlling the river water chemistry. Also, the water dominant type of Gorganrud River at the highlands margin is bicarbonate and as it enters the plain, it tends to reach full maturity, the type of sodium chloride. At all stations, river water is supersaturated with respect to calcite and dolomite but it is under saturated respect to anhydrite, gypsum and halite. However, evaporite minerals saturation increases in the flow direction. The quality of water for drinking and agriculture is suitable at the margins of highlands and as it enters the plain and the path to the Gorgan Gulf decreases sharply. According to the statistical analysis results, the most changes in physicochemical parameters are obtained between the Lazoure Station at the highlands margin and the Qazaghli Station in the middle part of the plain and after that no significant changes were observed between the quality parameters until Gorganroud outlet.
آذری، ع.، ناظمی، س.، کاکاوندی، ب. و رستگار، ا. 1394. بررسی پتانسیل خوردگی و رسوبگذاری منابع آب شرب شهر شاهرود با استفاده از شاخصهای پایداری در سال 1392، مجله دانشگاه علوم پزشکی سبزوار، 22، 6، 954 -944.
بدیعینژاد، ا.، حیدری، م.ر و فرزادکیا، م. 1394. بررسی پتانسیل خوردگی و رسوبگذاری شبکه توزیع آب آشامیدنی جنوب شهر شیراز. مجله رهآورد سلامت دانشکده بهداشت دانشگاه علوم پزشکی ایران. ۱،۱، ۵۱-۶۰.
روحانی، ح.، زکی، ا.، کاشانی، م. و فتحآبادی، ا. 1394. ارزیابی پایداری تغییرات کیفیت شیمیایی آب سطحی در رودخانۀ گرگانرود. مجله اکوهیدرولوژی، 2، 2، 129-140.
روستائی، م.، آقآتابای، م.، رقیمی، م.، نعمتی، م. و رحیمیچاکدل، ع. 1393. بررسی زمینساخت فعال دامنه شمالی البرز خاوری با استفاده از نشانههای زمین ریختی در حوضه آبریز گرگان رود . فصلنامه تحقیقات جغرافیایی. ۲۹، 4، ۴۳-۵۶.
قرهمحمودلو، م.، حشمتپور، ع.، جندقی، ن.، زارع، ع. و مهرابی، ح. 1397. بررسی هیدروژئوشیمیایی آب زیرزمینی آبخوان دشت سیدان-فاروق، استان فارس. مجله اکوهیدرولوژی، 5، 4، 1241-1253.
نبیزاده نودهی، ر.، مصداقینیا، ع.، ناصری، س.، هادی، م.، سلیمانی، ح. و بهمنی، پ. 1395. تحلیل تمایل خورندگی در سیستم تامین آب با استفاده از شاخصهای کیفی و شاخص کمی پتانسیل ترسیب کربنات کلسیم. فصلنامه سلامت و محیط زیست، ۹، 4، ۴۵۷-۴۷۰.
Arpine, H. and Gayane, S., 2016. Determination of background concentrations of hydrochemical parameters and water quality assessment in the Akhuryan River Basin (Armenia). Physics and Chemistry of the Earth, Parts A/B/C, 94, 2-9.
Batsaikhan, B., Kwon, J.S., Kim, K.H., Lee, Y.J., Lee, J.H., Badarch, M. and Yun, S.T., 2017. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environmental Science and Pollution Research, 24, 2, 2019-2034.
Clesceri, L.S., 2005. Standard method for the examination of water and wastewater. American Public Health Association, 15, 3635-42.
Faryabi, M., Kalantari, N. and Negarestani, A., 2010. Evaluation of factors influencing groundwater chemical quality using statistical and hydrochemical methods in Jiroft Plain. Scientific Quaternary Journal, Geosciences, 20, 77, 115-120.
Furkansener, M. and Baba, A., 2019. Geochemical and hydrogeochemical characteristics and evolution of Kozaklı geothermal fluids, Central Anatolia, Turkey. Journal of Geothermics, 80, 69-77.
Gibbs, R. J. 1970. Mechanisms controlling world water chemistry, Science 17, 1088-1090.
Hounslow, A., 1995. Water quality data: analysis and interpretation. 1st Edition. CRC press. 146.
Islam, M.A., Zahid, A., Rahman, M.M., Rahman, M.S., Islam, M.J., Akter, Y., Shammi, M., Bodrud-Doza, M. and Roy, B., 2017. Investigation of groundwater quality and its suitability for drinking and agricultural use in the south central part of the coastal region in Bangladesh. Exposure and Health, 9,1, 27-41.
Jackson, J., 2001. Living with earthquakes: know your faults. Journal of Earthquake Engineering, 5, 1, 5-123
Kumar, M., Kumari, K., Ramanathan, A.L. and Saxena, R., 2007. Acomparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Journal of Environmental Geology, 53, 553-574.
Larson, T.E. and Skold, R.V., 1958. Laboratory Studies Relating Mineral Quality of Water to Corrosion of Steel and Cast Iron, Illinois State Water Survey, Champaign, IL. ill. ISWS C-71, 43- 46
Laxmankumar, D., Satyanarayana, E., Dhakate, R. and Saxena, P.R., 2019. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundwater for Sustainable Development, 8, 474-483.
Liu, S., Ryu, D., Webb, J.A., Lintern, A., Waters, D., Guo, D. and Western, A.W., 2018. Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis. Marine Pollution Bulletin, 137, 137-151.
Mishra, B.K., Regmi, R.K., Masago, Y., Fukushi, K., Kumar, P. and Saraswat, C., 2017. Assessment of Bagmati river pollution in Kathmandu Valley: Scenario-based modeling and analysis for sustainable urban development. Sustainability of Water Quality and Ecology, 9, 67-77.
Nwankwoala, H.O. and Udom, G.J., 2011. Hydrochemical facies and ionic ratios of groundwater in Port Harcourt, Southern Nigeria. Research Journal of Chemical Sciences, 1, 3, 87-101.
Parkhurst, D. and Appelo, C., 1999. PHREEQC for Windows version 1.4.07, A hydrogeochemical transport model. U.S, Geological Survey Software.
Pazand, K., Khosravi, D., Ghaderi, M.R. and Rezvanianzadeh, M.R., 2018. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in central Iran. Journal of Groundwater for Sustainable Development, 6, 245-254.
Strauss, S.D. and Puckorius, P.R., 1984. Cooling-water treatment for control of scaling, fouling, corrosion. Power, 128, 6, S1-S24.
Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N. and Kiguchi, M., 2014. Projection of future world water resources under SRES scenarios: an integrated assessment. Hydrological Sciences Journal, 59, 1775-1793.
Subbarao, C., Subbarao N.V. and Chandu S. N., 1996. Characterization of groundwater contamination using factor analysis. Environmental Geology, 28, 4, 175-180.
Subramani, T., Elango, L. and Damodarasamy, S.R., 2005. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Journal of Environmental Geology, 47, 1099-1110.
Todd, D. and Mays, L., 2005. Ground water hydrology. Wiley, USA. 652.
Wilcox, L.V. 1955. Classification and Use of Irrigation Waters. U.S. Department of Agriculture. Circ, Washington, DC, US, 969.
Wu, Z., Wang, X., Chen, Y., Cai, Y. and Deng, J., 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914-922.
Xu, H., Zheng, H., Chen, X., Ren, Y. and Ouyang, Z., 2016. Relationships between river water quality and landscape factors in Haihe River Basin, China: Implications for environmental management. Chinese Geographical Science, 26,197-207.
You, S.H., Tseng, D.H. and Guo, G.L., 2001. A case study on the wastewater reclamation and reuse in the semiconductor industry Resources. Conservation and Recycling Journal, 32, 1, 73-81.
Zhao, G., Li, W., Li, F., Zhang, F. and Liu, G., 2018. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau. Science of the Total Environment, 610, 641-650.