Petrography, mineralography, geochemistry and calculation of elemental mass changes during hydrothermal alteration of Spid iron skarn ore deposit (West of Qom)
Subject Areas :Nima Rahimi 1 , حسن میرنژاد 2 , Maryam Sheibi 3 , Mohamad Hassan Karamian 4 , Alireza Hoseinyan 5
1 - University of Tehran
2 -
3 - Tehran University
4 - University of Tehran
5 - University of Tehran
Keywords: Argillic, Propylitic Mass changes, Hydrothermal alteration Spid Iron ore deposit. ,
Abstract :
Spid iron ore deposit is situated in the Urumieh-Dokhtar Magmatic Arc and is located 60 km West of Qom. The host rock varies in composition from diorite, quartz diorite to monzo diorite, and has been altered by the influence of hydrothermal fluids. The most important ore in the deposit is primary hematite (oligist) which is associated with pyrite, limonite, goethite, malachite and azurite. The most dominant alteration types in the Spid iron deposit are propylitic and argillic, identified by the presence of chlorite, epidote, carbonate, titanite, clay minerals and sericite. Grant Isocon method has been employed to study the behavior of elements and to calculate mass changes during hydrothermal alteration processes. The mass change calculations show that Fe2O3, MgO, K2O and LOI have been enriched, whereas P2O5, TiO2, Na2O and SiO2 have been depleted during propylitic alteration. The depletion of elements in this alteration points to the decomposition of primary minerals of the host rock, the presence CO2 rich solutions and the increase of fluid/rocks ratio during the development of the alteration system. During argillic alteration, SiO2, K2O, Na2O and P2O5 increased and TiO2, Fe2O3, MgO, CaO and LOI decreased. The increase in Na in this zone can be ascribed to the acidification of the plagioclase and its albitization, and the reduction of Fe and Mg results from the alteration of ferro-magnesin minerals such as amphibole, and the release of Fe in alterative solutions and outflow from the environment. Chemical index of alteration calculated for propylitic and argillic alteration zones are equal to 58.76 and 55.94 percent respectively, suggesting that propylitic alteration was more intense in the Spid ore deposit.
حاجیان، ج.، 1370. نقشه زمینشناسی 100000/1 تفرش. سازمان زمینشناسی و اکتشافات معدنی کشور، تهران.
سعادتمند، س. م.، 1390. گزارش طرح اکتشافی کانسار آهن اسپید. سازمان صنعت، معدن و تجارت استان قم، 82.
کرمیان، م. ح.، 1394. مطالعه ژنز کانسار آهن اسپید با استفاده از تلفیق داده¬های ژئوشیمیایی، ژئوفیزیکی و سنگشناختی. پایاننامه كارشناسي ارشد، دانشکده علوم، دانشگاه تهران، 168.
Amidi, S. M., 1975. Contribution a' l'etude stratigraphique, petrologique et petrographique des roches magmatiques de la region Natanz-Nain-Surk (Iran central). PhD thesis, University of Grenoble France, 237.
Barnett, M., Jardine, P.M., Brook, S.C. and Selim, H.M., 2000. Adsorption and transport of U (VI) in subsurface media. Soil Science Society of American Journal, 68, 908-914.
Cail, T.L. and Cline, J.S., 2001. Alteration associated with gold deposition Carlin-type at gold Getchel deposit, north-central Nevada. Economic Geology 96, 1343–1359.
Chappel, B.W. and White, A.J.R. 2001. Two contrasting granite types. Journal of Earth Science, 48, 489-499.
Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M. and Iizuka, Y. 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos,162, 70–87.
Cox, K. G. and Bell, J. D. and Pankhurst, R.G., 1979. The interpretation of igneous rocks. London, George Allen 8 unwin, 450.
Dargahi, S., Arvin, M., Pan, Y. and Babae, A., 2010. Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, South western Kerman, Iran: Constraints on the Arabian–Eurasian continental collision: Lithos, 115, 190–204.
Emami, M.H., 1981. Géologie de la région de Qom-Aran (Iran): Contribution a l’étude dynamique et géochimique du volcanisme Tertiaire de l’Iran Central. Ph.D., Thèse, University of Grenoble, France, 489.
Fedo, C. M., Nesbitt, H.W. and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology, 23, 921-924.
Forster, H., 1978. Mezozoic-Cenozoic metallogenesis in Iran: Journal of the Geological Society, 135, 443-445.
Fulignati, P., Gioncada, A. and Sbrana, A., 1998. Rare earth element behaviour in the alteration facies of the active magmatic-hydrothermal system of Volcano (Aeolian Islands, Italy). Journal of Volcanology and geothermal research, 88, 325-342.
Ghorbani, M. R., and Bezenjani, R. N. 2011. Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc, 20, 188–202.
Ghorbani, M.R., Graham, I.T. and Ghaderi, M., 2014. Oligocene Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review, 56,8, 1039-1050.
Gifkins, C., Herrmann, W. and Large, R., 2005. Altered Volcanic Rocks: A guide to description and interpretation. University of Tasmania, Centre for Ore Deposits and Exploration Studies, Hobart, 287.
Gill, R., 2010. Igneous Rocks and Processes: a practical guide. John Wiley and Sons Ltd, 472.
Grant, J. A., 1986. The isocon diagram- a simple solution to Gresens equation for metasomatic alteration. Economic Geology, 81, 1976- 1982.
Grant, J. A., 2005. Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, 30, 997-1004.
Green, P. E., 1980. On the cause of the shortening of spontaneous fission tracks in certain minerals. Nuclear Tracks, 4, 91-100.
Haschke, M., Ahmadian, J. and McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran: Economic Geology, 105, 855-865.
Honarmand, M., Omran, N.R., Corfu, F., Emami, M.H. and Nabatian, G., 2013. Geochronology and magmatic history of a calc-alkaline plutonic complex in the Urumieh–Dokhtar Magmatic Belt, Central Iran: zircon ages as evidence for two major plutonic episodes. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry. 190,1, 67-77.
Honarmand, M., Rashidnejad Omran, N., Neubauer, F., Hashem Emami, M., Nabatian, G., Liu, X., Dong, Y., von Quadt, A. and Chen, B. 2014. Laser-ICP-MS U–Pb zircon ages and geochemical and Sr–Nd–Pb isotopic compositions of the Niyasar plutonic complex, Iran: constraints on petrogenesis and tectonic evolution. International Geology Review, 56,1, 104-132.
Irvine, T. N. and Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks, Canadian Journal of Earth Sciences 8, 523-548.
Jiang, S. Y., Wang, R. C. Xu, X. S. and Zhao, K. D., 2005. Mobility of high field strength (HFSE) in magmatic metamorphic, and submarine hydrothermal systems, Physics and Chemistry of the Earth, 30, 1020-1029.
Jung, D., Kursten, M. and Tarkian, M., 1975. Post Mesozoic volcanism in Iran and its relation to the subduction of the Afro-Arabian under the Eurasian plate. In: pilger, A., and Rosler, A., (edts), afar between continental and oceanic rifting, I.G.C. scient. Report, 116,2, 175-181
Kabata, A. and Pendias, H., 1992. Trace Elements in Soils and Plants. 2nd Edition, CRC Press, Boca Raton, Florida, 315.
Kananian, A., Sarjoughian, F., Nadimi, A., Ahmadian, J. and Ling, W., 2014. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar magmatic arc (Iran): implications for source regions and magmatic evolution. Journal of Asian Earth Sciences 90, 137-148.
Kretz R. 1994. Metamorphic crystallization. John Wiley and Sons Ltd, 507.
Leitch, C. H. B. and Lentz, D. R., 1994. The Gresens approach to mass balance constraints of alteration systems: Methods, pitfalls, examples, in alteration processes associated with ore forming systems: Edited by D. R. Lentz: Geological Association of Canada: Short Course Notes, 11, 11-192.
Ling, S., Wu, X., Zhao, S., Liao, X., Ren, Y. and Zhu, B., 2014. Geochemical Mass Balance and Elemental Transport during the Weathering of the Black Shale of Shuijingtuo Formation in Northeast Chongqing, China. The Scientific World Journal, 742-950.
Lopez, J. M. G., Bauluz, B., Nieto, C. F. and Oliete, A. Y., 2005. Factors controlling the trace elements distribution in fine-grained rocks: The Albian kaolinite-rich deposits of the Oliete basin (NE Spain).
Mason, B. and Moore, C.B., 1982. Principles of Gochemistry. John Wiley and Sons, New York, 344.
Monteiro, L. V. S., Bettencourt, J. S., Juliani, C. and Oliveira, T. F., 2007. Nonsulfide and sulfide-rich zinc mineralizations in the Vazante, Ambrósia and Fagundes deposits, Minas Gerais, Brazil: Mass balance and stab leisotope characteristics of the hydrothermal alterations, Gondwana Research, 11, 362 –381.
Mote, T. I., Brimhall, G. H., Tidy-Finch, E., Muller, G. and Carrasco, P., 2001. Application of Mass-Balance Modeling of Sources, Pathways, and Sinks of Supergene Enrichment to Exploration and Discovery of the Quebrada Turquesa Exotic Copper Orebody, El Salvador District, Chile, Economic Geology, 96,2, 367-386.
Nesbitt, H. W. and Young, G. M., 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 279, 715-717.
Pearce, J. A., Haris, N. B. W. and Tindle, A. G. 1984. Trace element discrimination for the tectonic interpretation of granitic rocks. Journal of petrology 25, 956- 983.
Peccerillo, A., and Taylor S. R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
Poma, S., Quenardelle, S., Litvak, V., Maisonnave, E.B. and Koukharsky, M., 2004. The Sierra de Maco´n, plutonic expression of the Ordovician magmatic arc, Salta Province Argentina. Journal of South America Earth Science 16, 1–11.
Salvi, S. and Williams Jones, A. E., 1996. The role of hydrothermal processes in concentration high fied strength elements in the Strange Lakeperalkaline complex, north eastern Canada. Geochim. Cosmochim. Acta 60, 1917-1932.
Shahabpour, J., 1999. The role of deep structures in the distribution of some major ore deposits in Iran, NE of Zagros thrust zone: Journal of geodynamics, 28, 237-250.
Shand, S. J., 1943. Eruptive rocks. Their Genesis, Composition, Classification, and their relation to Ore-Deposits with a chapter on Meteorite. New York: John Wiley and Sons.
Taboada, T., Cortizas, A. M., Garcia, C. and Garcia-Rodeja, E., 2006. U and Th weathering and pedogenetic profiles devoleped on granitic rocks from Ne Spain. Science of the total Environmental 356, 192-206.
Takin, M., 1971. Iranian geology and Zeih continental drift Middle East. Geological Survey of Iran.
Wendlandt, R. F. and Harison, W. J., 1979. Rare earth partitioning between immiscible carbonate and rare earth enriched rocks. Cotri 6. Mineral. Petrol, 69, 409-419.
White, N.C. and Hedenquist, J.F., 1995. Epithermal Gold Deposits: styles, characteristics, and exploration. SEG Newsletter 23, 9-13.
Yeganehfar, H., Ghorbani, M. R., Shinjo, R. and Ghaderi, M. 2013. Magmatic and geodynamic evolution of Urumieh–Dokhtar basic volcanism, Central Iran: major, trace element, isotopic, and geochronologic implications. International Geology Review, 55,6, 767-786.