Investigation of natural landslides and landslides around the road using SHALSTAB physically based model
Subject Areas :
Keywords: : Calcite types Stable isotopes , Fluid infiltration Isotopic depletion Panah-Kuh skarn Yazd.,
Abstract :
The Panah-Kuh calcic and magnesian skarns are located about 50km northwest of Taft City in Yazd province. Intrusion of Panah-Kuh granodiorite stock with an Oligocene-Miocene age into limestone-dolomite rocks of the Jamal Formation led to the formation of calcic and magnesian skarn in the Panah-Kuh district. Values of δ18O of the granitic rocks and δ18O and δ13C values of the calcite types were determined in this study. Based on these data, δ18O and δ13C values in the studied calcite types are lower than those of sedimentary calcites. These isotopic variations are mainly produced by infiltration of magmatic fluids into carbonate rocks in the Panah-Kuh deposit. Depletetion of the δ18O and δ13C value in the calcite types of Panah-Kuh skarn can be explained by magmatic fluids interaction (δ18O =11.0‰) that interacted with unaltered limestone rocks at 350-450oC with X(〖CO〗_2 ) = 0.05 and water/rock ratio of 25 to 50% .
حسین زاده، م.م.، ثروتی، م.ر.، منصوری، ع.، میرباقری، ب. و خضری، س.، 1388. پهنهبندی ريسك وقوع حركات تودهای با استفاده از مدل رگرسيون لجستيك (مطالعه موردى: محدوده مسير سنندج – دهگلان). فصلنامه زمینشناسی ايران، 11، 27-37.
طالبی، ع. و ایزدوست، م.، 1390. بررسی کارایی مدل SINMAP در پهنهبندی خطر زمینلغزش (مطالعه موردی: حوزه آبخیز سد ایلام)، مجله علوم مهندسی آبخیزداری ایران، 15، 68-63.
طالبی، ع.، نفرزادگان، ع. ر. و ملکی نژاد، ح.، 1388. مروري بر مدلسازی تجربي و فيزيكي زمینلغزشهای ناشي از بارندگي، پژوهشهای جغرافياي طبيعي، 70، 64-45.
معماریان، ه. و صفدری، ع. ا. 1388. پایداری شیبهای طبیعی و تحلیل آن در محیط Arc GIS و آشنایی با مدل SINMAP. انتشارات سخن گستر.
Borga, M., Dalla Fontana, G., Da Ros D. and Marchi, L., 1998. Shallow landslide based model and digital elevation data. Environmental Geology, 35, 81–88.
Casadei, M., Dietrich, W.E., and Miller, N.L., 2003. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28, 925–950.
Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F. and Corsini, A., 2010. Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides, Online First. doi:10.1007/s10346-010-0207-y.
Claessens, L., and Heuvelink, G.B.M., Schoorl, J.M. and Veldkamp, A., 2005. DEM resolutions effects on shallow landslide hazard and soil redistribution modeling. Earth Surface Processes and Landforms, 30, 461–477.
Dietrich, W. E., Bellugi, D., and Real de Asua, R. 2001. Validation of the shallow landslide model, SHALSTAB, for forest management. Water science and Application , 2, 195-227.
Fernandes, N. F., Guimarães, R.F., Gomes, R.A.T. Vieira, B.C., Montgomery, D.R. and Greenberg, M. H., 2004. Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena, 55, 163-181.
Guimarães, R.F., Montgomery, D.R., Greenberg, H. M. Fernandes, N. F. Gomes, R.A.T. and Carvalho Junior, A.O., 2000. Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Engineering Geology, 69, 99-108.
Hammond C., Hall D., Miller S. and Swetik P., 1992. Level I, stability analysis (LISA) documentation for version 2.0. General technical report INT, 285.
Montgomery, D.R. and Dietrich, W.E., 1994. A physically based model for the topographic control on shallow landslide. Water Resour Res, 30, 83–92.
Montgomery D.R., Sullivan, K. and Greenberg, H.R., 1998. Regional test of a model for shallow landsliding. Hydrological Processes, 12, 943–955.
O'Loughlin, E.M., 1986. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research 22, 794–804.
Quinn, P., Beven, K., Chevallier, P. and Planchon, O., 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5, 59–79.
Rafaelli, S.G., Montgomery, D.R. and Greenberg, H.M., 2001. A comparison of thematic of erosional intensity to GIS-driven process models in an Andean drainage basin. Journal of Hydrology, 244, 33–42.
Santini, M., Grimaldi, S., Nardi, F., Petroselli, A. and Rulli, M.C., 2009. Pre-processing algorithms and landslide modelling on remotely sensed DEMs. Geomorphology, 113, 110–125.
Yilmaz, I. and Keskin, I., 2009. GIS based statistical and physical approaches to landslide susceptibility mapping. Bulletin of engineering geology and the environment, 68(4), 459-471.