The history of deposition and post-deposition and their effects on the reservoir quality of Asmari Formation in Ahvaz oilfield
Subject Areas :Akbar Heidari 1 * , Milad Faraji 2 , Narges Shokri 3
1 - Department of Petroleum Geology and Sedimentary Basins, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Department of Petroleum Geology and Sedimentary Basins; Faculty of EarthSciences; Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Department of Petroleum Geology and Sedimentary Basins; Faculty of EarthSciences; Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Sequence Stratigraphy, Diagenesis, Asmari formation, Sedimentary facies, Sedimentary environment, Reservoir.,
Abstract :
The carbonate interval of the Asmari formation along with sandstone deposits were deposited in most areas of the Zagros sedimentary Basin, including the Ahvaz area, in Oligo-Miocene. In this study, the effects of depositional and post-depositional environments on the reservoir quality of zone A7 of the Asmari Formation in well No. 4 in Ahvaz oil field were studied. The study of the sequences of the Asmari Formation in this section led to the identification of 11 carbonate facies, one evaporite facies, one mixed carbonate-siliciclastic facies, and one siliciclastic facies. Sedimentary environments of tidal zone, lagoon, coral reef and open sea were introduced for the depositional environment of identified facies. Due to the absence of sudden changes, it seems that the studied deposits were deposited in a ramp-type carbonate platform that was influenced by siliciclastic sediments from the Zagros river systems. The immature sedimentary texture of the sandstone facies indicates the proximity of the origin of the quartz sources to the carbonate basin. Among the diagenetic processes that have affected the examined sequences, the following processes can be mentioned: micritization, cementation, neomorphism, physical and chemical compaction, dissolution, fracture development and filling, dolomitization, and anhydritization. These diagenetic processes occurred in post-depositional marine, meteoric and burial diagenetic environments. Many fractures were filled with petroleum, which indicates that fractures, along with dolomitization, chemical compaction, and fenestral pores, are among the most important post-sedimentation complications to increase reservoir quality. While cementation and anhydritization resulted in reducing the reservoir quality by closing the pore spaces .
حیدری، ا.، 1401. تاریخچه پس از رسوبگذاری نهشتههای سازند آسماری با استفاده از داده های پتروگرافی و ایزوتوپهای کربن و اکسیژن در برش¬های حیدرآباد و رباط نمکی، شمال خرم آباد، مجله رسوب¬شناسی کاربردی، 10 (20)، 184-173. 10.22084/PSJ.2022.26067.1347
مرادی، ف. صادقی، ع. و امیری بختیار، ح.، 1395. لیتواستراتیگرافی و بیواستراتیگرافی سازند آسماری در یال جنوبی تاقدیس میش، تنگ گناوه (شمال گچساران)، فصلنامه زمینشناسی ایران، 37(10)، 1-10.
امید کاک¬مم، ا. و صادقي، م.م، 1393. دیاژنز، میکروفاسیس و تعیین کانی-شناسی اولیه کربنات¬های سازند آسماری در برش کوه ریگ، فصلنامه زمینشناسی ایران، 31(8)، 1-10.
مطیعی، ه.، 1373. چینه¬شناسی زاگرس، انتشارات سازمان زمین¬شناسی کشور، 536.
نوروزی، ن. دانشیان، ج. باغبانی، د. و آقانباتی، س. ع.، 1393. چینهنگاری زیستی نهشتههاي اليگوسن و ميوسن زيرين (سازندهاي پابده، آسماري و گچساران) براساس روزنبران درجنوب غرب شهرستان قیر، استان فارس، فصلنامه زمینشناسی ایران، 29(8)، 1-10.
Adams, T.D. and Bourgeois, F., 1967. Asmari biostratigraphy. Iranian Oil Operating Companies, Geological and Exploration.
Archie, G. E., 1950. Introduction to petrophysics of reservoir rocks. AAPG bulletin, 34(5), 943-961.
Badiozamani, K., 1973. The dorag dolomitization model, application to the middle Ordovician of Wisconsin. Journal of Sedimentary Research, 43(4), 965-984.
Brachert, T.C., Corrège, T., Reuter, M., Wrozyna, C., Londeix, L., Spreter, P. and Perrin, C., 2020. An assessment of reef coral calcification over the late Cenozoic. Earth-Science Reviews, 204, 103154.
Bover-Arnal, T., Jaramillo-Vogel, D., Showani, A. and Strasser, A., 2011. Late Eocene transgressive sedimentation in the western Swiss Alps: records of autochthonous and quasi-autochthonous biofacies on a karstic rocky shore. Palaeogeography, Palaeoclimatology, Palaeoecology, 312(1-2), 24-39.
Burchette, T.P. and Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary geology, 79 (1-4), 3-57.
Catuneanu, O., 2020, Sequence stratigraphy. In Regional Geology and Tectonics; 605-686. Elsevier.
Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W. and Strasser, A., et al., 2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44 (3), 173_245.
Chatalov, A., Ivanova, D. and Bonev, N., 2015. Transgressive Eocene clastic–carbonate sediments from the Circum‐Rhodope belt, northeastern Greece: implications for a rocky shore palaeoenvironment. Geological Journal, 50(6), 799-810.
Choquette, P.W. and Pray, L.C., 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geology bulletin, 54(2), 207-250.
Cuadrado, D.G., 2020. Geobiological model of ripple genesis and preservation in a heterolithic sedimentary sequence for a supratidal area. Sedimentology, 67(5), 2747-2763.
Dantas, M.V.S. and Holz, M., 2020. High-resolution sequence stratigraphy of a cretaceous mixed siliciclastic-carbonate platform succession of the Sergipe–Alagoas Basin, NE Brazil. Facies, 66(1), 1-17.
Dickson, J.A.D., 1965. A modified staining technique for carbonare in thin section, Nature, 205, 285.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture, texture, In, W.H. Ham (editor), Classification of Carbonate Rocks, American Association of Petroleum Geologists, Memoir, 1, 108-121.
Embry, A.F. and Johannessen, E.P., 1992. T_R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, O.A., Holter, E., Johansen, B., Lie, E., Lund, T.B. (Eds.), Arctic Geology and Petroleum Potential, vol. 2. Norwegian Petroleum Society (NPF), 121_146. (Special Publication).
Fabbi, S., Cestari, R., Marino, M., Pichezzi, R. and Chiocchini, M., 2020. Upper Cretaceous stratigraphy and rudist-bearing facies of the Simbruini Mts. (Central Apennines, Italy): new field data and a review. Journal of Mediterranean Earth Sciences, 12, 87-103.
Flugel, E., 2010. Microfacies of Carbonate Rocks Analysis Interpretation and Application. Springer- Verlag, 976.
Frazier, D. E., 1974. Depositional-episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf basin. Virtual Landscapes of Texas.
Friedman, G.M., 1965. Terminology of crystallization textures and fabrics in sedimentary rocks. Journal of Sedimentary Research, 35(3), 643-655.
Galloway, W. E., 1989. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. American Association of Petroleum Geology bulletin, 73(2), 125-142.
Gharechelou, S., Amini, A., Bohloli, B. and Swennen, R., 2020. Relationship between the sedimentary microfacies and geomechanical behavior of the Asmari Formation carbonates, southwestern Iran. Marine and Petroleum Geology, 116, 104306.
Haq, B. U., Hardenbol, J. A. N. and Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156-1167.
Helland-Hansen, W. and Gjelberg, J. G., 1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology, 92(1-2), 31-52.
Hunt, D. and Tucker, M. E., 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level'fall. Sedimentary Geology, 81(1-2), 1-9.
Hunt, R. A., Ciuffo, G. M., Saavedra, J. M. and Tucker, D. C., 1995. Quantification and localisation of angiotensin II receptors and angiotensin converting enzyme in the developing rat heart. Cardiovascular research, 29(6), 834-840.
Johnson, J. G. and Murphy, M. A., 1984. Time-rock model for Siluro-Devonian continental shelf, western United States. Geological Society of America Bulletin, 95(11), 1349-1359.
Khalili, A., Vaziri-Moghaddam, H., Arian, M. and Seyrafian, A., 2021. Carbonate platform evolution of the Asmari Formation in the east of Dezful Embayment, Zagros Basin, SW Iran. Journal of African Earth Sciences, 181, 104229.
Laursen, G.V., Monibi, S., Allan, T.L., Pickard, N.A.H., Hosseiney, A., Vincent, B., Hamon, Y., Van Buchem, F.S.P., Moallemi, A. and Druillion, G., 2009. Paper presented at: Shiraz 2009. First International Petroleum Conference and Exhibition: Shiraz, Iran. The Asmari Formation Revisited: Changed Stratigraphic Allocation and New Biozonation.
Mahmoodabadi, R.M., 2020. Facies analysis, sedimentary environments and correlative sequence stratigraphy of Gachsaran formation in SW Iran. Carbonates and Evaporites, 35(1), 1-28.
Mehrabi, H., Hajikazemi, E., Zamanzadeh, S. M. and Farhadi, V., 2023. Reservoir characterization of the Oligocene–Miocene siliciclastic sequences (Ghar Member of the Asmari Formation) in the northwestern Persian Gulf. Petroleum Science and Technology, 1-26.
Mitchum Jr, R. M., Vail, P. R. and Thompson III, S., 1977. Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.
Honarmand, J. and Amini, A., 2012. Diagenetic processes and reservoir properties in the ooid grainstones of the Asmari Formation, Cheshmeh Khush Oil Field, SW Iran. Journal of Petroleum Science and Engineering, 81, 70-79.
James, G.A. and Wynd, J.G., 1965. Stratigraphic nomenclature of Iranian oil consortium agreement area. American Association of Petroleum Geology bulletin, 49(12), 2182-2245.
Mazzullo, S.J., 1992. Geochemical and neomorphic alteration of dolomite: a review. Carbonates and evaporites, 7(1), 21-37.
Neal, J. and Abreu, V., 2009. Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37(9), 779-782.
Noorian, Y., Moussavi-Harami, R., Reijmer, J.J., Mahboubi, A., Kadkhodaie, A. and Omidpour, A., 2021. Paleo-facies distribution and sequence stratigraphic architecture of the Oligo-Miocene Asmari carbonate platform (southeast Dezful Embayment, Zagros Basin, SW Iran). Marine and Petroleum Geology, 128, 105016.
Posamentier, H.W., Jervey, M.T. and Vail, P.R., 1988. Eustatic controls on clastic deposition. I. Conceptual framework. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (Eds.), Sea Level Changes _ An Integrated Approach, v. 42. SEPM Special Publication, 110_124.
Rahmani, A., Taheri, A., Vaziri-Moghaddam, H. and Ghabeishavi, A., 2012. Biostratigraphy of the Asmari formation at khaviz and bangestan anticlines, Zagros Basin, SW Iran. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 1-16.
Riera, R., Bourget, J., Allan, T., Håkansson, E. and Wilson, M.E., 2022. Early Miocene carbonate ramp development in a warm ocean, North West Shelf, Australia. Sedimentology, 69(1), 219-253.
Sadeghi, R., Vaziri-Moghaddam, H. and Mohammadi, E., 2018. Biofacies, depositional model, and sequence stratigraphy of the Asmari Formation, Interior Fars sub-zone, Zagros Basin, SW Iran. Carbonates and Evaporites, 33(3), 489-507.
Setijadi, R., Widagdo, A. and Zaenurrohman, J.A., 2020. December. Limestone Facies Change of Jonggrangan to Sentolo Formation in The Western Part of Yogyakarta-Central Java Basin. In IOP Conference Series: Materials Science and Engineering, 982, 1, 012044, IOP Publishing.
Sheppard, T.H., 2006. Sequence architecture of ancient rocky shorelines and their response to sea-level change: An Early Jurassic example from South Wales, UK. Journal of the Geological Society, London 163, 595–606.
Silva–Tamayo, J.C., Rincon–Martinez, D., Barrios, L.M., Torres–Lasso, J.C. and Osrio–Arango, C., 2019. Cenozoic Marine Carbonate Systems of Colombia. In The Geology of Colombia. Servicio Geológico Colombiano, Volume 3 Paleogene–Neogene, 187-201.
Van Buchem, F.S.P., Allan, T.L., Laursen, G.V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N.A.H., Tahmasbi, A.R., Vedrenne, V. and Vincent, B., 2010. Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran. Geological Society, London, Special Publications, 329(1), 219-263.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F. and Loutit, T.S., et al., 1988. An overview of sequence stratigraphy and key definitions. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (Eds.), Sea Level Changes _ An Integrated Approach, vol. 42. SEPM Special Publication, 39_45.
Van Wagoner, J.C., Mitchum Jr., R.M., Campion, K.M. and Rahmanian, V.D., 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Core, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. American Association of Petroleum Geologists, Methods in Exploration Series 7, 55.
Vaziri-Moghaddam, H., Kimiagari, M. and Taheri, A., 2006. Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies, 52(1), 41-51.
Wilson, V.P., 1975. Carbonate Facies in Geologic History, Springer-Verlag, New York, 471.