Geochemistry and petrology of Qareh-Dash rhyolites from Shahindej- NW Iran: Geochemical features of post- collision volcanism
Subject Areas :Masoumeh Ahangari 1 * , معصومه نظری 2 , Mohsen Moazzen 3
1 -
2 -
3 -
Keywords: Rhyolite, Geochemistry, Peraluminous, Post- collision tectonic setting, Shahindej, Central Iran.,
Abstract :
Qareh-Dash rhyolites from the Shahindej area are peraluminous rocks with high SiO2 and K2O contents. These rocks are mainly composed of quartz, K- feldspar and rare plagioclase phenocrysts in a fine-grained K-feldspar rich matrix. Geochemically, Qareh-Dash rhyolites show enrichment in LREEs and LILEs and depletion in HREEs. Field studies, textural and petrographical relations, along with whole rock geochemistry, demonstrate that the parental magma of the Qareh-Dash rhyolites was originated from the crust. The composition of the parental magma was modified due to fractional crystallization of plagioclase and titanomagnetite evidenced by negative Eu, Sr and Ti anomalies in multielement diagrams. The chemical characteristics of Qareh- Dash rhyolites such as Rb/Nb, K/Rb, Rb/Sr, Rb/Ba and Ga/Al ratios are similar to A-Type granites/ rhyolites associated with post- collision tectonic settings. According to Precambrian age for the Qareh-Dash rhyolites, formation of these rocks might be related to extensional phases which were probably taken place after closure of proto- Thetys Ocean.
آقانباتی، ع.، 1383. زمینشناسی ایران. انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور، 586.
حریری، ع.، فرجندی، ف.، واعظیپور، م. و صادقی، ا. 1382. نقشه زمینشناسی 1:100000 سقز، سازمان زمینشناسی و اکتشافات معدنی کشور.
خلقی خسرقی، م.، اقلیمی، ب.، امینیآذر، ر. و علوینائینی، م. 1373. نقشه زمینشناسی 1:100000 شاهیندژ، سازمان زمینشناسی و اکتشافات معدنی کشور.
علوی، م.، حاجیان، ج.، عمیدی، م. و بلورچی، م. 1361. شرح نقشه زمینشناسی 1:250000 تکاب- صائینقلعه، سازمان زمینشناسی کشور.
ولیزاده، م. و اسماعیلی، د. 1375. پتروگرافی و پتروژنز گرانیت دوران، مجله علوم دانشگاه تهران، 22، 12- 36.
Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97,1, 1-29.
Callegari, E., Cigolini, C., Medeot, O. and D'Antonio, M., 2004. Petrogenesis of calc-alkaline and shoshonitic post-collisional Oligocene volcanics of the Cover Series of the Sesia Zone, Western Italian Alps. Geodinamica Acta, 17, 1, 1-29.
Castro, A., Vogt, K. and Gerya, T., 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23, 4, 1554-1566.
Clemens, J. D., Holloway, J. R. and White, A. J. R., 1986. Origin of an A-type granite; experimental constraints. American Mineralogist, 71, 3-4, 317-324.
Colucci, M. T., Dungan, M. A., Ferguson, K. M., Lipman, P. W. and Moorbath, S., 1991. Precaldera lavas of the southeast San Juan Volcanic Field: Parent magmas and crustal interactions. Journal of Geophysical Research: Solid Earth, 96, B8, 13413-13434.
Condie, K. C. and Kröner, A., 2013. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23(2), 394-402.
Dong, Y., Ge, W. C., Yang, H., Zhao, G., Wang, Q., Zhang, Y. and Su, L., 2014. Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing'an Range, NE China, and its tectonic implications. Lithos, 205, 168-184.
Eby, G. N., 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20, 7, 641-644.
Faramarzi, N. S., Amini, S., Schmitt, A. K., Hassanzadeh, J., Borg, G., McKeegan, K. and Mortazavi, S. M., 2015. Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation. Lithos, 236-237, 203-211.
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. and Frost, C. D., 2001. A geochemical cassification for granitic rocks. Journal of Petrology, 42, 11, 2033-2048.
Gaboury, D. and Pearson, V., 2008. Rhyolite Geochemical Signatures and Association with Volcanogenic Massive Sulfide Deposits: Examples from the Abitibi Belt, Canada. Economic Geology, 103, 7, 1531-1562.
Gou, J., Sun, D. Y., Liu, Y. J., Ren, Y. S., Zhao, Z. H. and Liu, X. M., 2013. Geochronology, petrogenesis, and tectonic setting of Mesozoic volcanic rocks, southern Manzhouli area, Inner Mongolia. International Geology Review, 55, 8, 1029-1048.
Guo, F., Fan, W. M., Wang, Y. J. and Lin, G., 2001. Late mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 759-771.
Hacker, B. R., Kelemen, P. B. and Behn, M. D., 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307, 3, 501-516.
Irvine, T. N. and Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8, 5, 523-548.
Ji, Z., Ge, W. C., Yang, H., Wang, Q. H., Zhang, Y. l., Wang, Z. H. and Bi, J. H., 2018. Late Jurassic rhyolites from the Wuchagou region in the central Great Xing’an Range, NE China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 158, 381-397.
Ji, Z., Meng, Q. A., Wan, C. B., Zhu, D. F., Ge, W. C., Zhang, Y. L., Yang, H., Dong, Y. and Jing, Y., 2019. Generation of late Mesozoic felsic volcanic rocks in the Hailar Basin, northeastern China in response to overprinting of multiple tectonic regimes. Scientific Reports, 9, 1, 15854.
Joplin, G. A., 1968. The shoshonite association: A review. Journal of the Geological Society of Australia, 15, 2, 275-294.
Kelemen, P. B., Shimizu, N. and Dunn, T., 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La, and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Sciencce Letters, 120, 111-134.
Kemp, A. I. S., Wormald, R. J., Whitehouse, M. J. and Price, R. C., 2005. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology, 33, 10, 797-800.
Li, W. X., Li, X. H. and Li, Z. X., 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136, 1, 51-66.
Li, X. H., Li, W. X., Li, Z. X. and Liu, Y., 2008. 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102, 1, 341-357.
Liu, H. Q., Xu, Y. G., Tian, W., Zhong, Y. T., Mundil, R., Li, X. H. and Shang-Guan, S. M., 2014. Origin of two types of rhyolites in the Tarim Large Igneous Province: Consequences of incubation and melting of a mantle plume. Lithos 204, 59-72.
Luchitskaya, M., Artem, M., Sokolov, S., Tuchkova, M., A. Sergeev, S., O'Sullivan, P. and Malyshev, N., 2017. Marginal continental and within-plate neoproterozoic granites and rhyolites of Wrangel Island, Arctic region. Geotectonics, 51, 17-39
Luchitskaya, M. V., Moiseev, A. V., Sokolov, S. D., Tuchkova, M. I., Sergeev, S. A., O'Sullivan, P. B. and Malyshev, N. A., 2017. Neoproterozoic granitoids and rhyolites of Wrangel Island: Geochemical affinity and geodynamic setting in the Eastern Arctic region. Lithos, 292-293, 15-33.
Maniar, P. D. and Piccoli, P. M., 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101, 5, 635-643.
Matté, V., Sommer, C. A., Lima, E. F. D., Philipp, R. P. and Basei, M. A. S., 2016. Post-collisional Ediacaran volcanism in oriental Ramada Plateau, southern Brazil. Journal of South American Earth Sciences, 71, 201-222.
Mbowou, G. I. B., Botelho, N. F., Lagmet, C. A. and Ngounouno, I., 2015. Petrology of peraluminous and peralkaline rhyolites from the SE Lake Chad (northernmost Cameroon Line). Journal of African Earth Sciences, 112, 129-141.
McDonough, W. F. and Sun, S. S., 1995. The composition of the Earth. Chemical Geology, 120, 223-253.
McMillan, N. J., Davidson, J. P., Wörner, G., Harmon, R. S., Moorbath, S. and Lopez-Escobar, L., 1993. Influence of crustal thickening on arc magmatism:, Nevados de Payachata volcanic region, northern Chile. Geology, 21, 5, 467-470.
Moayyed, M., 2013. Petrography and petrology of A-type rhyolites of Ghal'eh-chay (Ajabshir, East Azerbaidjan). Iranian Journal of Crystallography and Mineralogy, 21, 3, 403-416 (in Persian).
Morrison, G. W., 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13, 1, 97-108.
Nardi, L. and Bitencourt, M. d. F., 2009. A-type granitic rocks in post-collisional settings in southernmost Brazil: Their classification and relationship with tectonics and magmatic series. The Canadian Mineralogist, 47, 1493-1504.
Oliveira, D. S. d., Sommer, C. A., Philipp, R. P., Lima, E. F. D. and Basei, M. Â. S., 2015. Post-collisional subvolcanic rhyolites associated with the Neoproterozoic Pelotas Batholith, southern Brazil. Journal of South American Earth Sciences, 63, 84-100.
Parker, D. F., Ghosh, A., Price, C. W., Rinard, B. D., Cullers, R. L. and Ren, M., 2005. Origin of rhyolite by crustal melting and the nature of parental magmas in the Oligocene Conejos Formation, San Juan Mountains, Colorado, USA. Journal of Volcanology and Geothermal Research, 139,3, 185-210.
Patino Douce, A. E. and Beard, J. S., 1995, Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36, 3, 707-738.
Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19, 120-125.
Pearce, J., Harris, N. G. and Tindle, A., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
Peccerillo, A. and Taylor, S. R., 1976. Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamonu area, NorthTurkey. Contributions to Mineralogy and Petrology, 58, 63-81.
Rao, V. D., Narayana, B. L., Rao, P. R., Murthy, N. N., Rao, M. V. S., Rao, J. M. and Reddy, G. L. N., 2000, Precambrian Acid Volcanism in Central India - Geochemistry and Origin: Gondwana Research, 3, 2, 215-226.
Sensarma, S., Hoernes, S. and Mukhopadhyay, D., 2004, Relative contributions of crust and mantle to the origin of the Bijli Rhyolite in a palaeoproterozoic bimodal volcanic sequence (Dongargarh Group), central India: Journal of Earth System Science, 113, 4, 619-648.
Shao, F., Niu, Y., Regelous, M. and Zhu, D. C., 2015. Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. Lithos, 216-217, 196-210.
Stocklin, J., 1968. Structures history and tectonic of Iran: A review. American Association of Petroleum Geologist Bulletin, 52, 1229-1258.
Taylor, S. R. and McLennan, S. M., 1985. The continental crust: Its composition and evolution: Blackwell: Oxford Press, 312.
Turner, S. P., Foden, J. D. and Morrison, R. S., 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28, 2, 151-179.
Whalen, J. B., Currie, K. L. and Chappell, B. W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 4, 407-419.
Winchester, J. A. and Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. and Chu, M. F., 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence: Lithos, 89, 1, 89-106.
Zhang, J. H., Yang, J. H., Chen, J. Y., Wu, F. Y. and Wilde, S. A., 2018. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input. Lithos, 296-299, 482-495.