Mineralogy, geochemistry, fluid inclusion and genesis of magnetite-apatite mineralization in the southwest of Hormuz Island, Iran
Subject Areas :Masoud Alipour-Asll 1 * , عاطفه فخری دودوئی 2
1 -
2 -
Keywords: Magnetite, Apatite, Rare earth elements, Magmatic-hydrothermal, ,
Abstract :
The study area is located about 8 km south of Bandar Abbas in Hormozgan Province. This area is in the south of the Zagros folded zone and part of the Hormuz series. The late Precambrian-early Cambrian rocks comprise intercalations of rhyolite-rhyodacite lava and tuff, crystal ¬tuff, tuffaceous ¬shale, sandstone and evaporite layers. Iron mineralization along with apatite are found as dike, massive, vein-veinlets and disseminated forms in tuffaceous shale and crystalline tuff rock units. Based on iron oxides and apatite contents, mineralization can be divided into iron-oxides (mainly magnetite), iron oxides- apatite and apatite types. The main ore-forming minerals include magnetite, oligist, hematite, goethite and limonite, apatite, and gangue minerals are calcite, quartz and clay minerals. The Hormuz Island ores have a high concentration of rare earth elements (REE) and the total amount of REE in apatite-rich ores is up to 3%. The geochemical studies show that a strong positive correlation between P and REE. Comparison of the chondrite-normalized REE pattern of the Hormuz magnetite-apatite ores with those from the Bafq-Posht-e-Badam block and the Kiruna type iron ore deposits represent genetic similarity of mineralization. The homogenization temperature in the two-phased liquid and vapor (L+V) fluids in apatite minerals vary from 309 to 565°C (average 388°C), and salinity varies between 14.16 to 33.87 (20/80) wt.% NaCl. Finally, based on the field geology, mineralogy, geochemistry and fluid inclusion features, the Hormuz magnetite-apatite mineralization is classified in the Kiruna-type magnetite-apatite deposits group with magmatic-hydrothermal origin.
احمدزاده هروی، م.، هوشمند زاده، ع. و نبوی، م.ح.، 1369. مفاهیم جدیدی از چینه¬شناسی سازند هرمز و مسئله دیاپیریزم در گنبدهای نمکی جنوب ایران. مجموعه مقالات سمپوزیوم دیاپیریسم با نگرش ویژه به ایران، وزارت معادن و فلزات، جلد اول،1–22.
- احمدی مقدم، پ.، مرتضوی، م.، پوستی، م. و احمدی پور، ح.، 1397. زمینشناسی و سنگزائی سنگهای دیابازی سازند هرمز، واقع در استان هرمزگان (جنوب ایران). مجله بلورشناسی و کانیشناسی ایران، 26، 3، 651-664.
- افضلي، س.، نظافتي، ن.، قادری، م.، قلمقاش، ج.، قاسمی، م.ر. و كريمي باوندپور، ع.، 1393. سنگزايي و كانهزايي در کانسار اكسيد آهن آپاتيتدار گزستان، خاور بافق، ايران مركزي. فصلنامه علوم زمین، سازمان زمینشناسی و اکتشافات معدنی کشور، 24، 93، 77-84.
- آقانباتی، ع.، 1385. زمین¬شناسی ایران، سازمان زمین¬شناسی و اکتشافات معدنی کشور، 586.
- بهزادی، م.، 1385. کانی¬شناسی، ژئوشیمی و ژنز کانسار آهن آنومالی شمالی واقع در منطقه بافق یزد. رساله دکتری، دانشکده علوم زمین، دانشگاه شهید بهشتی، 211.
- بیابانگرد، ح.، عالیان، ف. و بازآمد، م.، 1397. کانی¬شناسی، ژئوشیمی و منشاً کانه¬زایی آهن و مس در توالی آتشفشانی-رسوبی هرمز. مجله زمینشناسی اقتصادی، 10، 1، 195-216.
- رجبزاده، م.ع.، حسینی، ک. و موسوی نسب، ز.، 1393. مطالعات کانیشناسی و ژئوشیمیایی عناصر کمیاب خاکی بر روی آپاتیت کانسار اکسید آهن-آپاتیت اسفوردی بافق-یزد. اولین همایش زمین¬شناسی فلات ایران، 11.
- رستمی، ع.، بازآمد، م.، حاج علیلو، ب. و مؤذن، م.، 1393. بررسی رفتار ژئوشیمیایی عناصر نادر خاکی در آپاتیت های جزیره¬ی هرمز، استان هرمزگان. مجله زمینشناسی اقتصادی، 6، 1، 71 تا 85.
- سپهری¬راد، ر.، 1379. زمین¬شناسی اقتصادی کانسار آهن آنومالی شمالی، چغارت، پایان¬نامه کارشناسی ارشد، دانشگاه تربیتمعلم، 158.
- فخری دودوئی، ع.، 1397. زمینشناسی اقتصادی و ژئوشیمی واحد H4 سری هرمز، جزیره هرمز. پایان¬نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود، 172.
- کارگران بافقی ف.، 1380. مطالعه زون¬های فسفات دار در کانسار آهن چغارت و ارتباط احتمالی آنها با زون¬های فسفاتدار اسفوردی. پایان¬نامه کارشناسی ارشد، دانشگاه تربیتمعلم، 111.
- لاسمی، ی.، 1379. رخسارهها، محیطهای رسوبی و چینه نگاری سکانسی نهشته سنگهای پرکامبرین بالایی و پالئوزوئیک ایران، انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور، 180.
- Aftabi, A., Mohseni, S., Babeki, A. and Azaraien, H., 2009. Fluid inclusion and stable isotope study of the Esfordi apatite–magnetite deposit, central Iran—a discussion. Economic Geology, 104, 137–139.
- Atapour, H. and Aftabi, A., 2017. Comments on Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new Cadomian arc magmatism in the Hormuz Formation, Lithos, 2015, 236–237, 203–211: A missing link of Ediacaran A-type rhyolitic volcanism associated with glaciogenic banded iron salt formation (BISF). Lithos, 284-285, 779-782.
- Bilenker, L.D., Simon, A.C., Reich, M., Lundstrom, C.C., Gajos, N., Bindeman, I., Barra, F. and Munizaga R., 2016. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochimica Cosmochimica Acta, 177, 94–104.
- Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S. and Ghazban, F., 2011. Significance of apatite REE depletion and monazite inclusions in the brecciated Se Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry, Chemical Geology, 281, 253-269.
- Daliran, F., 2002. Kiruna type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites; in Porter, Hydrothermal iron oxide copper gold and related deposits: A global perspective, PGC Publishing, Adelaide, 2, 303-320.
- Daliran, F., Stosch, H.G. and Williams, P., 2007. Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and apatitites of the Bafq District, Central-East Iran, in: Andrew, C.J. et al., eds, Digging Deeper, Proceedings of the 9th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Dublin, 1501-1504.
- Daliran, F., Stosch, H.G. and Williams, P., 2010. Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, east-central Iran, in: Corriveau, L., Mumin, H., eds., Exploring for iron oxide copper-gold deposits: Canada and global analogues: Geological Association of Canada, Short Course Notes, 20, 143-155.
- Dare, S.A.S., Barnes, S.J. and Beaudoin, G., 2014. Did the massive magnetite lava flows of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita, 50, 607–617.
- Dill, H.G., 2010. The chessboard classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Science Reviews, 100, 1-420.
- Eslamizadeh, A., 2017. Petrology and geochemistry of early Cambrian volcanic rocks hosting the Kiruna-type iron ore in Anomaly 10 of Sechahun, Central Iran. Journal of Sciences, Islamic Republic of Iran, 28, 1, 21-35.
- Driesner, T. and Heinrich, C.A., 2007. The system H2O-NaCl. Part I. Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71, 4880-4901.
- Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in Kiruna- type iron ores and some other iron ore type. Ore Geology Review, 9, 489-510.
- Geijer, P., 1910. Igneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuollavaara. Scientific and practical researches in Lapland arranged by the Luossavaara-Kiirunavaara Aktiebolag, Geology of the Kiruna district 2, Stockholm, 278.
- Goldstein, S.B. and Francis, D., 2008, The petrogenesis and mantle source of Archaean ferropicrites from the Western Superior Province, Ontario, Canada. Journal of Petrology, 49, 1729–1753.
- Haas, J.L. 1976. Thermodynamic properties of the coexisting phases and thermodynamic properties of the NaCl component in boiling NaCl solutions, United States Geological Survey Bulletine, 1421-B, 71.
- Haas, J.L. 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, 66, 940-946.
- Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F., 2007. Classification of ltered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of Petrology, 48, 2341–2357.
- He, X.F., Santosh, M., Tsunogae, T. and Malaviarachchi, S.P.K., 2018. Magnetiteapatite deposit from Sri Lanka: implications on Kiruna-type mineralization associated with ultramafic intrusion and mantle metasomatism. American Mineralogist, 103, 26–38.
- Hitzman, M.W., Oreskes, N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of proterozoic iron-oxide (Cu-U-Au-Ree) deposits. Precambrian Research, 58, 241–287.
- Jami, M., 2006. Geology, geochemistry and evolution of the Esfordi phosphate iron deposit, Bafq area, Central Iran, Unpublished Ph.D. thesis, University of New South Wales, 355.
- Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran, Economic Geology, 102, 1111-1128.
- Jonsson, E., Troll, V., Hogdahl, K., Harris, C., Weis, F., Nilsson, K.P. and Skelton, A., 2013. Magmatic origin of giant Kiruna-type apatite-iron-oxide ores in Central Sweden. Scientific Reports, 3, 1644.
- Kesler, S.E., 2005. Ore-forming fluids. Elements, 1, 13–18.
- Knipping, J.L., Bilenker, L., Simon, A. and Reich, M., 2015. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 43, 591–594.
- Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram, Journal of Petrology, 27, 745-750.
- Lester, G.W., Clark, A.H., Kyser, T.K. and Naslund, H.R., 2013. Experiments on liquid immiscibility in silicate melts with H2O, P, S, F, and Cl: Implications for natural magmas. Contributions to Mineralogy and Petrology,166, 329–349.
- Martel, C., Pichavent, M., Holtz, F. and Scaillet, B., 1999. Effects of ƒO2 and H2O on andesite phase relations between 2 and 4 kbar. Journal of Geophysical Research, 104, 29453–29470.
- Mohammad-Torab, F. and Lehmann, B., 2008. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71, 347–363.
- Mohseni, S. and Aftabi, A., 2015. Structural, textural, geochemical and isotopic signatures of synglaciogenic Neoproterozoic banded iron formations (BIFs) at Bafq mining district (BMD), Central Iran: The possible Ediacaran missing link of BIFs in Tethyan metallogeny, Lithos, 71, 215-236.
- Mokhtari, M.A.A., Emami, M.H. and Hosseinzadeh, G., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Sciences, 122, 795- 803.
- Mokhtari, M.A.A. and Ebrahimi, M., 2015. Geology and geochemistry of Homeijan magnetite- apatite deposit (SW Behabad, Yazd province). Geochemistry Journal, 2, 2, 20-27.
- Moor, F. and Modabberi, S., 2003. Origin of choghart iron oxide deposite Bafq minig district, centeral iran: new isotopic and geochemical evidences, 14, 259-269.
- Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757-775.
- Nystrom, J.O., Billstrom, K., Henríquez, F., Fallick, A.E. and Naslund, H.R., 2010. Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. Global Financing Facility (GFF), 130, 4, 177–188.
- Rahimi, E., Maghsoudi, A. and Hezarkhani, A., 2016. Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district. Journal of African Earth Sciences, 124, 139-150.
- Rhodes, A.L. and Oreskes, N., 1999. Oxygen isotope composition of magnetite depositsat El Laco, Chile: Evidence of formation from isotopically heavy fluids. In: Geology and Ore Deposits of the Central Andes, Brian, J. Skinner, ed., Society of Economic Geologists Special Publication 7, 333–351.
- Samani, B.A., 1988. Metallogeny of the Precamberian in Iran, Precambrian Research, 39, 85-106.
- Schandl, E.S. and Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97, 629–642.
- Sillitoe, R.H. and Burrows, D.R., 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Economic Geology, 97, 1101–1109.
- Smith, M.P., Storey, C.D., Jeffries, T.E. and Ryan, C., 2009. In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: New constraints on the timing and origin of mineralization. Journal of Petrology, 50, 2063–2094.
- Smith, M.P., Gleeson, S.A. and Yardley, B.W.D., 2013. Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: contrasting metal behaviour in aqueous and aqueous-carbonic brines. Geochimica Cosmochimica Acta, 102, 89–112.
- Sourirajan, S. and Kennedy, G.C., 1962. The system H2O-NaCl at elevated temperatures and pressures, American Journal of Sciences, 260, 115-141.
- Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42,1, 313-345.
- Tornos, F., Velasco, F. and Hanchar, J.M. 2017. The magmatic to magmatic hydrothermal evolution of the El Laco Deposit (Chile) and its implications for the genesis of magnetite-apatite deposits. Economic Geology, 112, 1595–1628.
- Troll, V.R., Weis, F.A., Jonsson, E., Andersson, U.B., Majidi, S.A., Hogdahl, K., Harris, C., Millet, M.A., Chinnasamy, S.S., Kooijman, E. and Nilsson, K.P., 2019. Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nature Communications, 10, 1, 1712.
- Westhues, A., Hanchar, J.M., Whitehouse, M.J. and Martinsson, O., 2016. New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna District, Norrbotten, Sweden. Economic Geology, 111, 1595–1618.
- Westhues, A., Hanchar, J.M., LeMessurier, M.J. and Whitehouse, M.J., 2017. Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide-apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 45, 571–574.
- Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
- Wilkinson, J.J., 2001. Fluid inclusion in hydrothermal ore deposits, Lithos, 55, 229-272.
- Xie, Q., Zhang, Z., Hou, T., Cheng, Z., Campos, E., Wang, Z. and Fei1, X., 2019. New Insights for the Formation of Kiruna-Type Iron Deposits by Immiscible Hydrous Fe-P Melt and High-Temperature Hydrothermal Processes: Evidence from El Laco Deposit. Economic Geology, 114, 1, 35–46.