مطالعه عوامل موثر بر کانه¬زایی معدن مس- طلای پورفیری- اپی¬ترمال سوناجیل، با استفاده از مطالعات سنجش ازدور، کانی¬شناسی و زمین¬شیمی
محورهای موضوعی :محمد معانی جو 1 , طیبه رمضانی 2 , سعید علیپور 3
1 - بوعلی سینا
2 - دانشگاه بوعلی سینا
3 - شرکت مهندسین مشاور پارس اولنگ
کلید واژه: کانی¬, سازی مس- طلا پورفیری- اپی¬, ترمال زمین¬, شیمی, سنجش از دور شمال¬, غرب کشور ,
چکیده مقاله :
به منظور شناسایی عوامل موثر بر کانی سازی معدن مس- طلای پورفیری- اپی ترمال سوناجیل به بررسی سنجش از دور، کانی شناسی و زمین شیمی پرداخته شد. بعد از حذف پوشش گیاهی توسط روش شاخص بهنجار شده پوشش گیاهی و اثرات بازتابش خورشیدی، خطای دستگاهی و اثرات توپوگرافی و آلبدو توسط روش لاگ بازماندی (LR)، روش های نسبت باندی (BR)، ترکیب کاذب رنگی (FCC)، تحلیل مولفه اصلی (PCA) و فیلترینگ تطبیق یافته تنظیم اختلاط (MTMF) برای شناسایی زون های دگرسانی اصلی منطقه مورد مطالعه به کار رفت و دگرسانی های فیلیک، آرژیلیک پیشرفته و پروپلیتیک آشکار شدند. دگرسانی های مذکور توسط مطالعات کانی شناسی تایید شدند. همچنین بررسی زمین شیمی نمونه کل توده پورفیری سوناجیل ترکیب میکرودیوریتی و شوشونیتی و پس از کوهزایی بودن معدن سوناجیل را مشخص کرد. در پایان، اختلاف تراکم گسلش، ترکیب ماگمای منشا و عمق کانه زایی از عوامل موثر بر کانه زایی معدن سوناجیل ذکر شد.
In order to identify the main effective factors in the Sonajil Cu-Au porphyry-epithermal deposit, remote sensing, mineralogical and geochemical studies were carried on the deposit. After removing vegetation and topographic features by Normalized Difference Vegetation Index (NDVI), solar radiance, instrumental errors and albedo effects by Log Residual (LR), Band Ratio (BR), False Color Composite (FCC), Principal Component Analysis (PCA) and Mixture-Tuned Matched-Filtering (MTMF) were used to reveal main alteration zones of the study area. The phyllic, advanced argillic and propylitic altered rocks were identified and the results were validated by field and mineralogical studies. Also, geochemical data showed microdiorite, and shoshonite composition and also post-orogenic tectonic setting of the Sonajil porphyry-copper deposits. Eventually, the faulting density, composition, and the depth of mineralization were the affecting factors on the Sonajil deposit mineralization.
1. آلیانی، ف. و دادفر، ث. و معانی جو، م.، 1393. آشکارسازی زونهای دگرسانی کانسار آهن حاجیآباد، با استفاده از دادههای (SWIR+VNIR) سنجنده Aster، فصلنامه علوم زمین شماره 24، 73-80.
حسین زاده، ق.، 1387 .مطالعات زمین¬شناسی، شیمی، سیالات درگیر، کانی¬سازي، دگرساني و ژنز کانسار مس پورفیری سوناجیل – شرق هریس )استان آذربایجان¬ شرقی.( رساله دکتري، گروه زمینشناسی، دانشگاه تبریز، 218.
سازمان نظاممهندسی معدن، 1395. گزارش پایانی اکتشاف محدوده سوناجیل در مقیاس 5000/1.
رمضانی، ط.، 1397. مطالعه برخی سامانه¬های مس پورفیری بارور و نابارور کمربند آتشفشانی اهر – ارسباران : با تاکید بر زمین¬شیمی سیال درگیر. رساله دکتري، گروه زمین¬شناسی، دانشگاه بوعلی¬سینا، 200.
معانی جو، م.، پوینده، ن.، سپاهی گرو، ع. ا.، دادفر، ث.، 1394. نقشهبرداری مناطق دگرسانی معدن طلای اپی ترمال داش کسن با استفاده از تلفیق تصاویر سنجده ASTER و تجزیه XRD، مجله علوم زمین، 95، 95-104.
Barnes, H.L., 1997. Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons.
Bonham Jr. H.F. 1986. Models for volcanic-hosted epithermal precious metal deposits: a review. Proceedings of the Volcanism, hydrothermal systems and related mineralization: Hamilton, New Zealand, Proceedings International Volcanological Congress, Symposium.
Canals, A., Cardellach, E., Rye, D.M. and Ayora, C., 1992. Origin of the Atrevida Vein (Catalonian coastal ranges, Spain); mineralogic, fluid inclusion, and stable isotope study. Economic Geology, 87, 142-153.
Chen, Y.J., Pirajno, F. and Sui, Y-H., 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Mineral Deposita, 39, 560-575.
Crippen, R.E., Blom, R.G. and Heyada, J.R., 1988. Directed band ratioing for the retention of perceptually-independent topographic expression in chromaticity-enhanced imagery. Remote Sensing, 9, 749-765.
Dalton, J.B., Bove, D.J., Mladinich, C.S. and Rockwell, B.W., 2004. Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite–epidote–chlorite problem. Remote Sensing of Environment, 89, 455-466.
Di Tommaso, I. and Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275-290.
Einaudi, M.T., Hedenquist, J.W. and Inan, E.E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. Special Publication-Society of Economic Geologists, 10, 285-314.
Fontboté, L., Kouzmanov, K., Chiaradia, M. and Pokrovski, G.S., 2017. Sulfide minerals in hydrothermal deposits. Elements, 13, 97-103.
Giggenbach, W. 1992. Seg distinguished lecture-magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. In: Economic geology. university of texas at el paso room 202 quinn hall, el paso, tx 79968.
Green, T. and Pearson, N., 1985. Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochimica et Cosmochimica Acta, 49, 1465-1468.
Heinrich, C.A., 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineral Deposita, 39, 864-889.
Hezarkhani, A., 2008. Hydrothermal evolution of the Sonajil porphyry copper system, East Azarbaijan Province, Iran: The history of an uneconomic deposit. International Geology Review, 50, 483-501.
Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42, 501-513.
Hunt, G.R. and Ashley, R.P., 1979. Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 1613-1629.
Huston, D.L. and Large, R.R., 1989. A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geology Reviews, 4, 171-200.
Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30, 433-447.
Jamali, H. and Mehrabi, B, 2014. Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran Magmatic Belt. Ore Geology Reviews, 16, 155-170.
John, D., Ayuso, R., Barton, M., Blakely, R., Bodnar, R., Dilles, J., Gray, F., Graybeal, F., Mars, J. and McPhee, D., 2010. Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment. US Geological Survey Scientific Investigations Report. 169.
Kim, S. and Park, H.D, 2003. The relationship between physical and chemical weathering indices of granites around Seoul, Korea. Bulletin of engineering geology and the environment, 62, 207-212.
Kouzmanov, K. and Pokrovski, G.S., 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems, 16, 573-618.
Krauskopf, K., 1979. Introduction to Geochemistry. 2nd edn McGraw-Hill. New York.
Lukanin, O.A., 2016. Chlorine partitioning between melt and aqueous chloride fluid phase during granite magma degassing. Part II. Crystallization-induced degassing of melts. Geochemistry International, 54, 660-680.
Maghsoudi, A., Yazdi, M., Mehrpartou, M., Vosoughi, M. and Younesi, S., 2014. Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. Journal of Asian Earth Sciences, 79, 932-941.
Mars, J.C. and Rowan, L.C., 2006. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2, 161-186.
Ninomiya, Y.A. 2003, stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. Proceedings of the International Geoscience and Remote Sensing Symposium.
Ogg, J.G., Ogg, G. and Gradstein, F.M., 2008. The Concise Geologic Time Scale. University Press.
Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration Geological Association of Canada, Short Course Notes, 12, 79-114.
Pearce, J.A., Harris, N.B. and Tindle, AG., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
Pirajno, F., 2009. Hydrothermal processes associated with meteorite impacts. In: Hydrothermal Processes and Mineral Systems. Springer, 1273.
Pour, A.B. and Hashim, M., 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42, 1309-1323.
Pour, A.B. and Hashim, M., 2012a. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1-9.
Pour, A.B. and Hashim, M., 2012b. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar Volcanic Belt, Iran. Advances in Space Research, 49, 753-769.
Reichenbacher, B., Alimohammadian, H., Sabouri, J., Haghfarshi, E., Faridi, M., Abbasi, S., Matzke-Karasz, R., Fellin, M.G., Carnevale, G. and Schiller, W., 2011. Late miocene stratigraphy, palaeoecology and palaeogeography of the Tabriz basin (NW Iran, Eastern Paratethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 311, 1-18.
Rowan, L.C., Goetz, AF. and Ashley, R.P., 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics, 42, 522-535.
Rowan, L.C., Schmidt, R.G. and Mars, J.C., 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104, 74-87.
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology. 105: 3–41.
Spatz, D. and Wilson, R., 1995. Remote sensing characteristics of porphyry copper systems, western America Cordillera. Arizona Geological Society Digest, 20, 94-108.
Vaziri, H.M. and Sobhani, E.A., 1977. Volcanology and Volcanosedimentology of the Sahand Region. Kharazmi University.
Weldemariam, A., 2009. Mapping hydrothermally altered rocks and lineament analysis through digital enhancement of ASTER data case study: Kemashi area, Western Ethiopia. Master of Science Dissertation, Addis Ababa University, Addis Ababa.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
Winchester, J. and Floyd, P., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
Yang, K. and Bodnar, R.J., 1994. Magmatic-Hydrothermal evolution in the “Bottoms” of porphyry copper systems: Evidence from silicate melt and aqueous fluid inclusions in granitoid intrusions in the Gyeongsang Basin, South Korea. International Geology Review, 36, 608-628.
Zajzon, N., Szentpéteri, K., Szakáll, S. and Kristály, F., 2015. The origin of the Avram Iancu U–Ni–Co–Bi–As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania. Int J Earth Sci (Geol Rundsch), 104, 1865-1887.
Zhang, X., Pazner, M. and Duke, N., 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62, 271-282.