الگوی توزیع عناصر نادر خاکی در پهنههای دگرسان و کانهدار کانسار لخشک (پهنه زمین درز سیستان)
محورهای موضوعی :نسیم حیدریان دهکردی 1 , شجاعالدین نیرومند 2 * , حسینعلی تاج الدین 3
1 - جهاد دانشگاهی
2 - دانشگاه تهران
3 - علوم پایه
کلید واژه: بیهنجاری Eu, پهنه برشی, عناصر نادر خاکی, لخشک. ,
چکیده مقاله :
کانسار لخشک در بخش جنوبغربی پهنه زمیندرز سیستان و در 28 کیلومتری شمالغربی زاهدان واقع است. واحدهای سنگی رخنمون یافته شامل تودههای نفوذی گرانیتوئیدی و دایکهای داسیتی-ریولیتی با سن الیگوسن و کالکشیست و کوارتز شیست با سن ائوسن هستند که در حد رخساره شیست سبز دگرگون شدهاند. این مجموعه تحت تأثیر پهنه برشی با روند شمالشرق-جنوبغرب دگرریخت شده است. ترکیب تودههای نفوذی براساس نمودارهای سنگشناسی در محدوده گرانودیوریت قرار میگیرد. براساس مطالعات پتروگرافی، کانیهای تشکیلدهنده تودههای نفوذی شامل کوارتز، آلکالی فلدسپات، پلاژیوکلاز، بیوتیت، سریسیت، مسکویت، اکسیدهای آهن و کلسیت است. از مهمترین انواع دگرسانیها میتوان به دگرسانیهای سریسیتی، سولفیدی، سیلیسی و کربناتی اشاره کرد. بررسی الگوهای پراکندگی عناصر نادر خاکی در نمونههای پهنه برشی، نشاندهنده غنیشدگی REE در بخشهای مرکزی پهنه برشی (درجات شدید دگرسانی و دگرشکلی) نسبت به واحدهای کمر بالا و کمر پایین (درجات ضعیف دگرسانی و دگرشکلی) پهنه برشی است. الگوی پراکندگی این عناصر شامل غنیشدگی LREE نسبت به HREE است که میتوان آن را به دگرگونی ناحیهای در حد رخساره شیست سبز و چرخش سیالات CO2 و SO42- در پهنه برشی لخشک نسبت داد. علاوه بر آن، وجود بیهنجاریهای Eu مثبت و منفی در پهنه برشی نشاندهنده دو مرحله دگرسانی متفاوت است. دگرسانی ضعیف تا متوسط که به ایجاد بیهنجاری Eu مثبت منجر شده است و دگرسانی پیشرفته که سبب تجزیه شدید پلاژیوکلاز بهعنوان منبع اصلی Eu و بیهنجاری Eu منفی شده است.
Lakhshak deposit is located in the southwestern part of the Sistan Suture zone and 28 km northwest of Zahedan. The exposed rock units include granitoid intrusion and dacite-rhyolite dykes with Oligocene age and calc schist and quartz schist with Eocene age, which have metamorphosed to the green schist facies. This complex has transformed under the influence of a shear zone with a northeast-southwest trend. The composition of intrusive masses placed in the range of granodiorite based on lithological charts. Based on petrographic studies, the minerals that make up the intrusive masses include quartz, alkali feldspar, plagioclase, biotite, sericite, muscovite, iron oxides and calcite. Among the most important types of alteration, we can mention sericite, sulfide, siliceous and carbonate alterations. Analysis of the distribution patterns of rare earth elements in the shear zone samples shows the enrichment of REE in the central parts of the shear zone (severe degrees of alteration and deformation) compared to the foot wall and hanging wall units (weak degrees of alteration and deformation) of the shear zone. The distribution pattern of these elements includes the enrichment of LREE compared to HREE, which can attributed to regional metamorphism at the green schist facies and the circulation of CO2 and SO42- fluids in the Lakhshak shear zone. In addition, the presence of positive and negative Eu anomalies in the shear zone indicates two different stages of alteration. Weak to moderate alteration has led to the creation of positive Eu anomaly and advanced alteration has caused severe decomposition of plagioclase as the main source of Eu and negative Eu anomaly.
بومری، م.، مجددیمقدم، ح. و بیابانگرد، ح.، 1397. سنگشناسی و زمینشناسی سنگهای آذرین و کانیزایی آنتیموان طلا در منطقه سفیدسنگ و درگیابان. فصلنامه پترولوژی، (9) 35، 193-216.
حیدریان دهکردی، ن.، نیرومند، ش.، تاجالدین، ح.ع. و نوزعیم، ر.، 1398. بررسی عوامل کنترلکننده کانیزایی در کانسار طلای لخشک (زون زمیندرز سیستان)، هفتمین همایش ملی زمینساخت و زمینشناسی ساختاری ایران، دانشگاه تهران.
حیدریان دهکردی، ن.، نیرومند، ش.، تاجالدین، ح.ع، ادیب، ش. و میرزایی، س.، 1400. زمینشناسی، کانیشناسی، دگرسانی و پتانسیلسنجی کانسار لخشک، زون زمیندرز سیستان بر مبنای مطالعات ژئوفیزیکی (IP/RS). فصلنامه زمینشناسی ایران، 15، 58، 25-39.
نیرومند، ش.، 1397. گزارش بررسی زمینشناسی و شواهد ساختاری کانسار لخشک در زون زمیندرز سیستان، 68.
Agard, P., Omrani, J., Jolivets L., Whitechurch, H., Vrielynck, B. and Spakman, W., 2011. Zagros orogeny: a subduction-dominated process. The geological magazine, 148, 692–725.
Behruzi, A., 1993. Geological map of Zahedan 1:250000 survey sheet. Geological survey of Iran
Camp, V.E., Griffis, R.J., 1982. Character, genesis, and tectonic setting of igneous rocks in the Sistan suture zone, Eastern Iran. Lithos, 15, 221–239.
Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. George Allen and Unwin, London.
Fotoohi Rad, G.R., Droop, G.T.R. and Amini, S., 2005. Eclogites and blueschists of the Sistan Suture Zone, eastern Iran: a comparison of P–T histories from a subduction mélange. Lithos 84, 1–24.
Goldfarb, R.J., Baker, T. and Dube, B., 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary 407–450.
Groves, D.I., Goldfarb, R.J., Gebre, M.M., Hagemann, S.G. and Robert, F., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13, 7-27.Groves, D., Condie, K.C., Goldfarb, R.J., 2005. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology 100, 203–224.
Heydarian Dehkordi, N., Niroomand, S. and Tajeddin, H.A., 2022. Integrated geophysical study of the Lakhshak gold-antimony deposit in the Sistan suture zone, southeastern Iran. Arabian Journal of Geosciences. DOI:10.1007/s12517-022-09628-9.
Heydarian Dehkordi, N., Niroomand, S., Tajeddin, H.A. and Nozaem, R., 2022. Metamorphic rock-hosted orogenic gold deposit style at Lakhshak deposit: Their key features and significances for gold exploration in Sistan suture zone, GEOPERSIA. 12(2): 317-329 DOI: 10.22059/GEOPE.2022.330120.648632.
Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.
Kikawada, Y., 2001. Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology 176, 137–149.
Kerrich, R., Goldfarb, R.J., Groves, D.I. and Garwin, S., 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distribution, and origins: Reviews in Economic Geology, 13, 501–551.
Kerrich, R., Goldfarb, R.J. and Baker, Richards, J.P., 2005. Metallogenic Provinces in an Evolving Geodynamic Framework. Economic Geology 100th Anniversary 1097–1136.
Middlemost, E.A.K., 1985. Magmas and magmatic rocks. Longman, London.
Pearce, J.A., Harris, N.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–983.
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Berlin, Germany 1250 .
Robert, F., Brommecker, R., Bourne, B.T., Dobak, P.J., McEwan, C.J. and Rowe, R.R., Zhou, X., 2007. Models and exploration methods for major gold deposit types: exploration 07. Fifth Decennial International Conference on Mineral Exploration, Toronto, Proceedings 691–710.
Robert, F., Poulsen, K.H. and Dubé, B., 1997. Gold deposits and their geological classification. Explor 97, 209-220.
Rolland, Y., Cox, S., Boullier, A.M., Pennacchioni, G. and Mancktelow, N., 2003. Rare earth and trace element mobility in mid crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 214, 203-219.
Rollinson, H.R., 1993. Using geochemical data: evolution, presentation, interpretation. London, UK. 652.
Tirrul, R., Bell, I.R. and Griffis, R.J., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin 9, 134–150.
Whitney, D. and Evans, B.D., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95 (1), 185–187.
Zhu, Y.F., 2011. Geology and geochemistry of the shear zone related gold deposits in west Tianshan, Xinjiang, NW China. In: Abstract Volume with Program of CERCAMS 14 and MDSG 34, Natural History Museum, London 1–66.