Investigation of geochemistry of minor and trace elements (rare earths) in the base metal vein mineralization Yaralujeh area (NW Ahar - East Azarbaijan)
Subject Areas :Zohreh Jabarzadeh 1 , Mehadi Moradi 2 , Moayyed 3 , Zargar Faramarzi 4
1 -
2 -
3 -
4 -
Keywords: Rare earth elements Geochemistry Hydrothermal alteration Ce and Eu anomalies Yaralujeh. ,
Abstract :
The Yaralujeh vein index is located about 40 km NW of Ahar, East Azarbaijan. Based on geochemical studies, the original host rock is microdioritic in composition with calc – alkaline character, situated in an active continental margin volcanic arc. The mineralization is occurred as disseminated, stockwork and veins - veinlets containing quartz, carbonate and sulfide minerals in altered subvolcanic rocks (microdiorite). Pyrite, sphalerite, galena and chalcopyrite are the most important sulfide minerals in this area. The most important alerations in this area are sericitic and carbonatization, and the main alteration minerals are quartz, sericite, illite, albite, kaolinite, leucoxene, pyrite and late carbonates. Bivariate diagrams of Ba + Sr vs. Ce + Y + La and Zr vs. TiO2 and also values less than one for TiO2 indicate a hypogenic origin for altered fluids. The spider diagrams of REEs, normalized to both chondrite and average upper continental crust, show differentiation of LREE from HREE and depletion of LREE relative to average upper continental crust. Based on geochemical indicators such as Hf / Sm, Nb / La and Th / La and LREE enriched relative to the HREE, the most important ion complexes transition metal are Cl- complexes. Ce, Eu and Pr (Eu/Eu*, Ce/Ce*, Pr/Pr*) anomalies in ore-bearing vein and host rock indicates near-neutral pH in a redox environment for the alteration fluids in Yaralujeh Index.
-آقانباتی، ع.، 1383. زمین¬شناسی ایران. سازمان زمین¬شناسی و اکتشافات معدنی کشور. ص 586.
-جبارزاده، ز.، حسین¬زاده، م.ر.، مؤید، م.، فرامرزی، ر.، 1392. کانی¬سازی رگه¬ای فلزات پایه در اندیس رگه¬ای یارالوجه، (شمال¬غرب اهر-استان آذربایجان¬شرقی). هفدهمین همایش انجمن زمین¬شناسی دانشگاه شهید بهشتی. 362-369.
-جبارزاده، ز.، حسین¬زاده، م.ر.، مؤید، م.، فرامرزی، ر.، 1394. کانی¬شناسی و زمین¬شیمی دگرسانی¬های گرمابی در اندیس رگه¬ای یارالوجه، (شمال¬غرب اهر-استان اذربایجان¬شرقی). مجله بلورشناسی و کانی¬شناسی ایران، زیر چاپ.
-حاج¬علیلو، ب.، 1391. گزارش پایانی عملیات اکتشاف فلزات پایه با اولویت مس در کانسار علی جواد اهر. سازمان صنعت، معدن و تجارت استان آذربایجان شرقی.
-مهرپرتو، م.، امینی¬افضل، ع.، 1371. نقشه زمین¬شناسی ورزقان با مقیاس 100000/1. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور.
-Alavi, M., 1991. Sedimentary and structural characteristics of the paleo-Tethys remnants Iran. Geol. Soc. Of Amer. Bull, 103, 983-992.
-Alderton D.H.M., Pearce J.A., Potts P.J., 1980. Rare earth element mobility during granite alteration: evidence from southwest England. Earth and Planetary Science Letters, 49, 149-165.
-Ashley, R. P., and Albers, J. P., 1975. Distribution of gold and other ore-related elements near ore bodies in the oxidized zone at Goldfield, Nevada, Geology and Geochemistry of the Goldfield Mining district, Nevada. Geologica Survey. Professional, 1-48.
-Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup. South Africa. Precambrian Res, 79, 37-55.
-Bi X.W., Hu, R.Z., Peng, J.T., Wu K.X., 2004. REE and HFSE geochemical characteristics of pyrites in Yao҆ an gold deposit: tracing ore forming fluid signatures. Bulletin of Mineralogy, Petrology and Geochemistry, 23, 1-4 (in Chinese with English abstract).
-Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: Meteorite studies, in Henderson, P., ed., Rare earth element geochemistry. Amsterdam Elsevier, 63-114.
-Dill H. G., Bosse H. R., Kassbohm J., 2000. Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central America Cordillera (Werstern Salvador). Economic Geology, 95, 517-538.
-Fulignati P., Gioncada A., Sbrana A., 1999. Rare earth element behaviour in the alteration facies of the active magmatic-hydrothermal system of Volcano (Aeolian Islands, Italy). Journal of Volcanology and geothermal research, 88, 325-342.
-Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology, 48, 2341-2357.
-Lewis A.J., Palmer M.R., Sturchio N.C., Kemp A.J., 1997. The rare earth element geochemistry of acid-sulfate and acid-sulfate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 61, 695-706.
-Lottermoser, B.G., 1990b. Rare-earth element and heavy metal behaviour associated with the recent epithermal gold deposit on Lihir Island, Papua New Guinea. J. Volcanol. Geotherm. Res., 40, 269-289.
-Maiza, P.J., Pieroni, D., Marfile, S.A., 2003. Geochemistry of hydrothermal kaolin in the Se area of Los menvcos, Province of Rlonegro, Arrgentina. In: Dominguez, E.A., Mas, G.R., Cravero, F. (Eds.), 2001, A Clay Odyssey Elsevier, Amsterdam, 123-130.
-McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.). Geochemistry and mineralogy of rare earth elements: Reviews in Mineralogy, 21, 169-200.
-Michard A., 1989. Rare earth element systematics in hydrothermal fluid. Geochimica et Cosmochimica Acta, 53, 745-750.
-Mill, R.A., Elderfield, H., 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge. Grochimica et Cosmochimica Acta, 59, 3511-3524.
-Oreskes, N., Einaudi, M.T., 1990. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Economic Geology, 85, 1-28.
-Palacios, C.M., Hein, U.F., Dulski, P., 1986. Behaviour of rare earth elements during hydrothermal alteration at the Buena Esperanza copper–silver deposit, northern Chile. Earth Planetary Science Letter, 80, 208-216.
-Pearce J.A., Harris N.B.W and Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. F. Petrol., 25, 956-983.
-Pearce, J.A., 1996. Ausers guide to basalt discrimination diagram, in: D. A. Wyman (ED.), Trace element Geochemistry of volcanic rocks: Applications for Massive Sulphide Exploration, Short Courses Notes. Geological Association of Canada, 12, 79-113.
-Pearce, J.A., Cann, J.R., 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet. Sci. Lett., 32, 339-349.
-Peter J.M., Good Fellow W.D., Doherty W., 2003. Hydrothermal sedimentary rocks of the Heath Steel Belt, Bathurst mining camp, New Brunswick: Part 2, ln: Good Fellow W.D., McCutcheon, S.R., Peter J.M. (Ed), Massive sulfide deposits of the Bathurst mining camp, New Brunswick and Northern Main. Economic Geology, 11, 391-415.
-Price, B.J., 1972. Minor element in pyrites from the Smithers Map Area, British Columbia and Exploration Applications of Minor element Studies ( doctoral dissertation). Vancouver: Columbia University.
-Rio, R., Dupuy, C., Dostal, J., 1981. Geochemistry of coexisting alkalin and calk-alkaline volcanic rocks from Northern Azarbijan (NW Iran). Journal of volcanology and Geothermal Research, 11, 253-275.
-Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, 352.
-Ronov A. B., Balashov Y. A., Migdisov A. A., 1967. Geochemistry of the rare earths in the sedimentary cycle. Geochemistry International, 4, 1-17.
-Schandle, E.S., Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97, 629-642
-Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. London. Geological Society Special Publication, 42, 313-345.
-Taylor, S. R., McLennan, S. M., 1985. The continental crust: its composition and evolution. Blackwell. Oxford, 312.
-Whitney L., Evans W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
-Wilkinson, J.J., Eyre, S.L., Boyce, A.J., 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry and isotopic composition of sulfides at the Lisheen Min. Economic Geology, 100, 63-86.
-Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination different magma series and their differentiation products using immobile elements. Chemical Geology, 16, 325-343.
-Zhai, W., Sun, X., Sun, W., Su, L., He, X., and Wu, Y., 2009. Geology, Geochemistry, and genesis of Axi: A Paleozoic Low Sulfidation type epithermal gold deposit in Xinjiang. China, Ore Geology Reviews, 36, 265-281.