A suitable algorithm for identifying changes in micro-landforms using UAV images. Case study: Barg-e- Jahan area in Jajrud region (2015-2016)
Subject Areas :M.H. Tavakol 1 , M. Ghahroudi 2 * , H. Sadough 3 , Kh. Alinoori 4
1 -
2 -
3 -
4 -
Keywords: Deep learning algorithms, Random forest, Microlandform, SVM , RBF.,
Abstract :
One of the main and most important topics of geomorphology is the identification and evaluation of microlandform changes. Their recognition and spatial distribution in order to understand and evaluate changes, stability studies and regional planning is one of the basic needs of applied geomorphology. Barg-e- Jahan area is located in Jajroud catchment area affected by many environmental changes. In this study, based on micro-scale geomorphological approach, using UAV images along with field survey in the Barg-e- Jahan area, microlandforms changes were investigated. UAV images with a spatial resolution of 2.5 cm were obtained from the Ministry of Energy between 2015 and 2016. These images were corrected using ENVI 5.1 and Arc Map 10.3 software, and then the desired algorithms were implemented via coding in Python. Changes were investigated with machine learning algorithms and random forest models, SVM with RBF kernel, random forest with features extracted from CNN networks, and SVM with linear kernel with features extracted from deep neural networks. Results showed that the SVM-RBF model is less accurate than other models with 88% accuracy, so the separation between the classes was limited. In the random forest, 92% of the classes were distinguishable with linear boundaries. The near-ideal model in the random forest algorithm with deep learning was observed with an accuracy of 96%. Investigations showed that most of the changes in microlandforms in this model were related to the change of vegetation cover to soil by 45.03%, and in the next place, the change of sheet wash erosion by 22.05%. According to the obtained results and field observations in 2017, it was determined that the flood of 2017 in Barg-e-Jahan area has caused major changes in the area. Its greatest impact was on the vegetation and the diagram shows at the highest degree of disturbance. In this period, the surface flow and gully formation in the area increased and it shows the high level of erosion and great changes of microlandforms in the study area.
آراء، ه.، 1392. لندفرمها و طبقهبندی آنها در علم ژئومورفولوژی (مطالعه موردی: حوضه آبریز جاجرود در شمال شرق تهران). فصلنامه علمی-پژوهشی اطلاعات جغرافیایی سپهر، 22 (86)، 17-22.
چورلی، ر، ج.، استانلی، ا.ش. و دیوید، ا، 1375. ژئومورفولوژي. ترجمه احمد، معتمد (جلد اول) تهران،انتشارات سمت، 168.
خدري غريب وند، ل.، قهرودي تالي، م.، سبك خيز، ف. و سپهر، ع.، 1397. بررسي روند تكاملي پهنههای گلي باتلاق گاوخوني با استفاده از مدل فركتال. جغرافيا و برنامهریزی محيطي، 29 (2)، 113-128. 10.22108/gep.2018.98241.0.
رعیتی شوازی، م.، کرم، ا.، غفاریان مالمیری، ح، م. و سپهر، ع.، 1396. مقایسه کارایی برخی الگوریتمهای طبقهبندی در مطالعه تغییرات لندفرمهای بیابانی دشت یزد – اردکان. پژوهشهای ژئومورفولوژی کمی، 1 (21)، 73-57.
شایان، س.، احمدآبادی، ع.، یمانی، م.، فرج زاده اصل، م. و احسان الله کبیر، م.، 1391. ارزیابی شاخصهای ژئومورفومتریک به روش وود در طبقهبندی لندفرمهای مناطق خشک (مطالعه موردی: منطقه مرنجاب). برنامهریزی و آمایش فضا، 16 (1)، ۱۰۵-۱۲۰.
قهرودي تالي، م. و علي نوري، خ.، 1396. تغييرات مكاني پلاياي حوض سلطان در دوره 2016-1991، پژوهشهاي ژئومورفولوژي كمي، 20 (4)، 103-120.
قهرودي تالي، م. و علي نوري، خ.، 1393. ردیابی مخاطرات پلایای حوض سلطان با بررسی آشفتگی میکرولندفرمها.، مدیریت مخاطرات محیطی، 1 (2)، 241-252.
قهرودي تالي، م .و خدري غريب وند، ل.، 1395. رویکرد فرمشناسی در استراتژی مدیریت تالابها و پلایاها بررسی موردی: پلایای گاوخونی. فصلنامه علوم محیطی، 14 (2)،118-109.
مکرم، م. و نگهبان، س.، 1394. طبقهبندی لندفرمها با استفاده از شبکههای عصبی خود سازنده (Selforganization map). فصلنامه کواترنری ایران، 1 (3)، 225-238.
نعیمی نظامآباد، ع.، قهرودی تالی، م. و ثروتی، م، ر.، 1388. آشکارسازی تغییرات لندفرمهای ساحلی منطقه عسلویه. جغرافیایی سرزمین، 22 (2)، 59-65.
Baartman, J. E., Temme, A. J. and Saco, P. M., 2018. The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surface Processes and Landforms, 43(10), 2121-2135.
Bernal, I., Tavera, H., Sulla, W., Arredondo, L. and Oyola, J., 2018. Geomorphology Characterization of Ica Basin and Its Influence on the Dynamic Response of Soils for Urban Seismic Hazards in Ica, Peru, International Journal of Geophysics.43-59
Bocco, G., Mendoza, M. and Velazquez, A., 2001. Remote sensing and GIS-based regional geomorphological mapping a tool for land use planning in developing countries. Geomorphology, 39(3-4), 211-219.
Cassandra, A.P. B. and Crider, G. J., 2022. A new metric for morphologic variability using landform shape classification via supervised machine learning, Geomorphology, 399(108065), doi.org/10.1016/j.geomorph.2021.108065.
Chakrabortty, R., Pal, S. C., Santosh, M., Roy, P. and Chowdhuri, I., 2022. Gully erosion and climate induced chemical weathering for vulnerability assessment in sub-tropical environment. Geomorphology, 398,108027, doi:10.1016/j.geomorph.2021.108027.
Debnath, J., Pan, N. D., Ahmed, I. and Bhowmik, M., 2017. Channel migration and its impact on land use/land cover using RS and GIS: A study on Khowai River of Tripura, North-East India, The Egyptian Journal of Remote Sensing and Space Science, 20(2), 197-210.
James, M. and Robson, Stuart, 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application, Journal of Geophysical Research, 117, F03017, doi:10.1029/2011JF002289.
Laurentiis, D.L., Pomente, A., Del, F. F. and Schiavon, G., 2019. Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data, 11154, 1115405, doi:10.1117/12.2532551.
Liu, B. and Coulthard, T., 2017. In Dynamic Equilibrium: The Autogenic Landform Change in a Fluvial-Aeolian Interacting Field. In Fifth International Planetary Dunes, 1961, 3001.
Panda, P. and Narasimham, M., 2018. Dynamic Geomorphology of the Kosi Fan in Consequence to a Mega-Avulsion Aided by Space Inputs and Hydraulic Modeling, J Remote Sensing and GIS, 7, 1000238, doi: 10.4172/2469-4134.1000238.
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R. and Feizizadeh, B., 2017. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion, Geomorphology, 298, 118-137.
Salles, T., Flament, N. and Muller, D., 2017. Influence of dynamic topography on the evolution of the eastern Australian landscape since the Upper Jurassic Epoch, In EGU General Assembly Conference Abstracts, 11432.
Sawagaki, T., LAMSAL, D., Byers, A. and Watanabe, T., 2012. Changes in surface morphology and glacial lake development of Chamlang South Glacier in the eastern Nepal Himalaya since 1964, Global Environmental Research, 16, 83-94.
Spencer,T., Larissa, N.,Stuart, L.,Stephen, D.,Mark, M.,Francis, M. and Iris., M., 2017. Stormy geomorphology: an introduction to the Special Issue, Earth Surface Processes and Landforms, 42, 238–241, doi: 10.1002/esp.4065.
Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Wei, Z., Han, Y., Li, M., Yang, K., Yang, Y., Luo, Y. and Ong, S. H., 2017. A small UAV based multi-temporal image registration for dynamic agricultural terrace monitoring, Remote Sensing, 9(9), 904.
Wondzell, S. M., Cunningham, G. L. and Bachelet, D., 1996. Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert, Landscape Ecology, 11(6), 351-362.