کنودونتهای تریاس پیشین سازند سرخشیل در برش چینهشناسی رباط شور (باختر طبس، خاور ایران مرکزی) و بررسی ضریب تغییر رنگ آنها در ارتباط با توان تولید هیدروکربور
محورهای موضوعی : شاخه های دیگر علوم زمین در ارتباط با زمین شناسی نفتعبیر عیسی 1 , عباس قادری 2 * , محمد خانه باد 3 , تیا کولار- جورکاوسک 4
1 - دانشجوي دکتري چينهنگاری و دیرینهشناسي، گروه زمينشناسي، دانشکده علوم، دانشگاه فردوسي مشهد، مشهد، ايران
2 - گروه زمينشناسي، دانشکده علوم، دانشگاه فردوسي مشهد، مشهد، ايران
3 - گروه زمينشناسي، دانشکده علوم، دانشگاه فردوسي مشهد، مشهد، ايران
4 - استاد گروه دیرینه شناسی، سازمان زمین شناسی اسوونی، لیوبلیانا، اسلوونی
کلید واژه: تریاس پیشین, گریسباخین, اسمیتین, سرخشیل, کنودونت,
چکیده مقاله :
در این پژوهش، توالی رسوبی سازند سرخشیل در برش چینهشناسی رباط شور در باختر کفه فروافتاده طبس از دیدگاه زیستچینهنگاری مورد بررسی قرار گرفته است. توالی سازند سرخشیل در این برش با 48 متر ستبرا، متشکل از شیل، مارن و سنگآهکهای مارنی است که با گذر همشیب بر روی آخرین لایههای سازند جمال قرار گرفته و به طور مشابهی توسط دولومیتهای سازند شتری پوشیده شدهاند. در نمونههای برداشت شده از توالی یاد شده 9 گونه مختلف متعلق به 4 جنس کنودونتی Ellisonia، Hadrodontina، Parachirognathus و Pachycladina شناسایی شدند که برای نخستین بار از این سازند گزارش میشوند. مجموعه کنودونتی موجود در قالب سه بایوزون Hadrodontina aequabilis، Hadrodontina anceps و Pachycladina obliqua تفکیک شدهاند. تاکسای مورد مطالعه با کنودونتهایی که پیشتر از قلمروهای نزدیک به ساحل و کم ژرفای تتیس باختری در جنوب و خاور اروپا در بازه زمانی تریاس پیشین (گریسباخین پسین ـ اسمیتین میانی) گزارش شده بودند، همخوانی خوبی دارند. این بایوزونهای کنودونتی برای فهم بهتر پراکندگی و قرابت کنودونتهای تریاس پیشین باختر آسیا، جایگاه زیستدیرینهجغرافیایی آنها و کارکردشان در زیستچینهنگاری تریاس پیشین جهت مقایسه با بایوزونهای کنودونتی معرفی شده از دیگر نقاط جهان و در نهایت انجام تطابق زیستچینهای مناسب با نقاط مشابه کاربرد دارند. بررسـی ضریب تغییر رنگ کنودونتهای سازند سرخشیل در زمان گریسباخین پسین بیانگر شاخص CAI=5، در اسمیتین بیانگر شاخص CAI=4 و در دینرین بیانگر CAI=6-8 میباشد که در محدوده عقیم برای تولید هیدروکربور قرار میگیرد.
Sorkh Shale Formation in Rabat-e-Shur stratigraphic section, west of the Tabas Depression, has been biostratigraphically investigated in this research. The Sorkh Shale Formation, with 48 meters thickness in this section, consists of shale, marl, and marly limestones, which are underlain by the Permian Jamal Formation and are overlain by the Triassic Shotori Formation dolomites. Nine conodont species belonging to four genera, Ellisonia, Hadrodontina, Parachirognathus, and Pachycladina were identified for the first time from this formation. The mentioned conodont assemblage is divided into three biozones: Hadrodontina aequabilis, Hadrodontina anceps, and Pachycladina obliqua. These taxa are in good agreement with the previously reported euryhaline assemblages from the near-shore and shallow water Western Tethyan realms in the south and east of Europe in the Early Triassic (Late Griesbachian-Middle Smithian). These conodont biozones are used for a better understanding of the distribution and affinities of the Early Triassic conodonts in West Asia, their paleobiogeographical rank, their significant role in the Early Triassic chronostratigraphy and their importance in bio-correlation of different section worldwide. Examination of the conodont alteration index of the obtained taxa from the Sorkh Shale Formation demonstrates CAI=5 during the late Griesbachian, CAI=4 in the Smithian, and CAI=6-8 in the Dienerian substages which is placed in the barren Zone for hydrocarbon production.
1. آقانباتی، س.ع.، 1393. زمینشناسی ایران: سازمان زمینشناسی و اکتشافات معدنی کشور، 640 صفحه.
2. شیخ الاسلامی، م.ر. و زمانی، م.، 1378، نقشه زمینشناسی حلوان: سازمان زمینشناسی و اکتشافات معدنی کشور، شماره 7257، مقیاس 000/1:100.
3. قماشى، م. و لاسمى، ی.، 1383، محيطهاي رسوبي و چينه نگاري سكانسي سازند سرخ شيل (ترياس زيرين) در بلوك طبس، نشريه علوم دانشگاه تربيت معلم، جلد چهارم، شماره 2، صفحه 369-386.
4. یحیی شیبانی، و.، صباغ بجستانی، م. و خانهباد، م.، 1396، چينه سنگي و محيط رسوبي سازند سرخ شيل در بلوك طبس، شرق ايران مركزي: سومين همايش انجمن رسوب شناسي ايران، شماره سوم، صفحه 625-642.
5. ALGEO, T.J., 2011, The Early Triassic cesspool: marine conditions following the end-Permian mass extinction. In: HAKANSSON, E., TROTTER, J. (Eds.), Program and Abstracts, the XVII International Congress on the Carboniferous and Permian: Geological Survey of Western Australia, 35 (4), 6-38.
6. ALGEO, T.J., and TWITCHETT, R.J., 2010, Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences: Geology, 38, 1023–1026.
7. ALGEO, T.J., CHEN, Z.Q., FRAISER, M.L., and TWITCHETT, R.J., 2011, Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems: Palaeogeography, Palaeoclimatology, Palaeoecology, 308 (1–2), 1–11.
8. ALGEO, T.J., HENDERSON, C.M., TONG, J., FENG, Q., YIN, H., and TYSON, R.V., 2013, Plankton and productivity during the Permian-Triassic boundary crisis: an analysis of organic carbon fluxes: Global and Planetary Change, 105, 52–67.
9. ALJINOVIĆ, D., KOLAR-JURKOVŠEK, T., and JURKOVŠEK, B. 2006, The Lower Triassic shallow marine succession in Gorski Kotar region (External Dinarides, Croatia): Lithofacies and conodont dating: Rivista Italiana di Paleontologia e Stratigrafia, 112 (1), 35-53.
10. ALJINOVIĆ, D., KOLAR-JURKOVŠEK, T., JURKOVŠEK, B., and HRVATOVIĆ, H. 2011, Conodont dating of the Lower Triassic sedimentary rocks in the external Dinarides (Croatia and Bosnia and Herzegovina): Rivista Italiana di Paleontologia e Stratigrafia, 117 (1), 135–148.
11. BAUD, A., RICHOZ, S., and PRUSS, S.B., 2007, The Lower Triassic anachronistic carbonate facies in space and time: Global and Planetary Change, 55, 81–89.
12. BEYERS, J.M., and ORCHARD, M.J. 1991, Upper Permian and Triassic conodont faunas from the type area of Cache Creek complex, south-central British Columbia, Canada: Geological Survey of Canada Bulletin, 417, 269 –297.
13. BONDARENKO, L.G., ZAKHAROV, Yu.D., GURAVSKAYA, G.I., and SAFRONOV, P.P., 2015, Lower Triassic zonation of southern Primorye: Article 2. First conodont findings in Churkites cf. syaskoi Beds at the western coast of the Ussuri Gulf: Russian Journal of Pacific Geology, 9 (3), 203–214.
14. BRAYARD, A., ESCARGUEL, G., BUCHERB, H., MONNET, C., BRÜHWILER, T., GOUDEMAND, N., GALFETTI, T., and GUEX, J., 2009, Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction: Science, 325, 1118–1121.
15. BRAYARD, A., VENNIN, E., OLIVIER, N., BYLUND, K.G., JENKS, J., STEPHEN, D.A., BUCHER, H., HOFMANN, R., GOUDEMAND, N., and ESCARGUEL, G., 2011, Transient metazoan reefs in the aftermath of the end-Permian mass extinction: Nature Geoscience, 4, 693–697.
16. BRONNIMANN, L., ZANINETTI, A., and MOSHTAGHIAN, A., HUBER, H., 1973, Foraminifera from the Sorkh Shale Formation of the Tabas area, east-central Iran. Riv: Italian Paleontologists, 79 (1): 1-32.
17. BUDUROV, K., and PANTIĆ, S., 1973, Conodonten aus den Campiler Schichten von Brassina (Westserbien): II. Systematischer Teil, Bulletin of the Geological Institute-Series Paleontology, 22, 49–64.
18. CHEN, Y.L., KOLAR-JURKOVŠEK, T., JURKOVŠEK, B., ALJINOVIĆ, D., and RICHOZ, S., 2016, Early Triassic conodonts and carbonate carbon isotope record of the Idrija–Žiri area, Slovenia: Palaeogeography, Palaeoclimatology, Palaeoecology, 444, 84–100.
19. CHEN, Z.Q., and BENTON, M.J., 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction: Nature Geoscience, 5, 375–383.
20. CLARK, D.L. 1972. Early Permian crisis and its bearing on Permo-Triassic conodont taxonomy: Geologica et Palaeontologica, Sp., 1, 147-158.
21. CLARKSON, M.O., WOOD, R.A., POULTON, S.W., RICHOZ, S., NEWTON, R.J., KASEMANN, S.A., BOWYER, F., and KRYSTYN, L., 2016, Dynamic anoxic ferruginous conditions during the end Permian mass extinction and recovery: Nature Communication, 7, 12236, 1-9.
22. DOZET, S., and KOLAR-JURKOVŠEK, T., 2007, Spodnjetriasne plasti na južnovzhodnem obrobju Ljubljanske kotline, osrednja Slovenija = Lower Triassic beds in the southern borderland of the Ljubljana depression, central Slovenia: Materiali in Geookolje, 54 (3), 361–386.
23. EPSTEIN, A.G., EPSTEIN, J.B., and HARRIS, L.D., 1977, Conodont color alteration; an index to organic metamorphism: United States Geological Survey Professional Paper, 995, 1-27.
24. ERWIN, D.H., BOWRING, S.A., and JIN, Y.G., 2002, End-Permian mass extinctions: a review: Geological Society of America Special Papers, 356, 363–383.
25. FARABEGOLI, E., and PERRI, M.C., 1998, Permian-Triassic boundary and Early Triassic of the Bulla section (Southern Alps, Italy): lithostratigraphy, facies and conodont biostratigraphy. In: PERRI, M.C., and Spalletta, C., (Eds.): Southern Alps Fie1d Trip Guidebook, ECOS VII., Giornale di Geologia, Speciallssue, 60, 292-310.
26. FARABEGOLI, E., and PERRI, M.C., 2012, Millennial Physical Events and the End-Permian Mass Mortality in the Western Palaeothethys: Timing and Primary Causes: In: TALENT, J.A. (Eds.), Part of the book Earth and Life: International Year of Planet Earth (IYPE), Environmental Science, Geography, 719-758.
27. FERRETTI, A., BANCROFT, A.M., REPETSKI, J.R., 2020, GECkO: Global Events impacting Conodont evolution: Palaeogeography, Palaeoclimatology, Palaeoecology, 549, 109677, 1-8.
28. GANSSER, A., 1955, New aspects of geology in Central Iran, Proceedings of the fourth world petroleum congress, Rome, Section I/A/5, Geology, 279-300.
29. GHADERI, A., GARBELLI, C. ANGIOLINI, L. ASHOURI, A.R. KORN, D. RETTORI, R. and MAHMUDY GHARAIE, M.H., 2014a. Faunal changes near the End Permian Extinction: the brachiopods of the Ali Bashi Mountains, NW Iran: Rivista Italiana di Paleontologia e Stratigrafia, 120 (1), 27-59.
30. GHADERI, A., LEDA, L., SCHOBBEN, M., KORN, D., and ASHOURI, A.R., 2014b. High-resolution stratigraphy of the Changhsingian (Late Permian) successions of NW Iran and the Transcaucasus based on lithological features, conodonts and ammonoids: Fossil Record, 17, 41-57.
31. GLAUS, M., 1964, Trias und Oberperm in Zentralen Elburs (Persien): Eclogae Geologicae Helvetiae, 57, 497-508.
32. GOUDEMAND, N., 2014. Note on the Conodonts from the Induan/Olenekian Boundary: Albertiana, 42, 49–51.
33. HORACEK, M., RICHOZ, S., BRANDNER, R., KRYSTYN, L., and SPOTL, C., 2007, Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: The δ13C record from marine sections in Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 355–369.
34. IGO, H., 1996, Silurian to Triassic conodont biostratigraphy in Japan, Acta Micropalaeontology Since, 13 (2), 143 –160.
35. JELASKA, V., KOLAR-JURKOVŠEK, T., JURKOVŠEK, B. and GUŠIĆ, L. 2003, Triassic beds in the basement of the Adriatic-Dinaric carbonate platform of Mt. Svilaja (Croatia) = Triasne plasti v podlagi Jadransko-dinarske karbonatne platforme na planini Svilaja (Hrvaška). Geologija, 46 (2), 225–230.
36. JURKOVŠEK, B., OGORELEC, B., and KOLAR-JURKOVŠEK, T., 1999, Lower Triassic beds from Tehovec = Polhov Gradec Hills, Slovenia. Geologija, 41, 29-40.
37. KOLAR-JURKOVŠEK, T., CHEN, Y. L., JURKOVŠEK, B., POLJAK, M., ALJINOVIĆ, M., and RICHOZ, S., 2017, Conodont Biostratig¬raphy of the Early Triassic in Eastern Slovenia: Palaeon¬tological Journal, 51, 687-703.
38. KOLAR-JURKOVŠEK, T., JURKOVŠEK, B., VUKS, V.J., HRVATOVIĆ, H., Aljinović, D., ŠARIĆ, Ć., and SKOPLJAK, F., 2014, The Lower Triassic platy limestone in the Jajce area (Bosnia and Herzegovina), Geologija, 57 (2), 105–118.
39. KOLAR-JURKOVŠEK, T., and JURKOVŠEK, B., 1995, Lower Triassic conodont fauna from Tržič (Karavanke Mts. Slovenia): Eclogae Geologicae Helvetiae, 88 (3), 789 – 801.
40. KOLAR-JURKOVŠEK, T., and JURKOVŠEK, B., 1996, Contribution to the knowledge of the Lower Triassic conodont fauna in Slovenia: Razprave 4. Razreda Sazu, 37 (1), 3–21.
41. KOLAR-JURKOVŠEK, T., and JURKOVŠEK, B., 2015, Conodont zonation of Lower Triassic strata in Slovenia, Geologija, 58 (2), 155–174.
42. KOLAR-JURKOVŠEK, T., and JURKOVŠEK, B., and ALJINOVIĆ, D., 2011, Conodont biostratigraphy and lithostratigraphy across the Permian–Triassic boundary at the Lukač section in western Slovenia: Rivista Italiana di Paleontologia e Stratigrafia, 117 (1), 115–133.
43. KORN, D., LEDA, L., HEUER, F., MORADI SALIMI, H., FARSHID, E., AKBARI, A., SCHOBBEN, M., GHADERI, A., STRUCK, U., GLIWA, J., WARE, D., and HAIRAPETIAN, V., 2021. Baghuk Mountain (Central Iran): high-resolution stratigraphy of a continuous Central Tethyan Permian–Triassic boundary section: Fossil Record, 24, 171-192.
44. KOZUR, H., 2003. Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to stage/substage subdivision and the numeric age of the Triassic stages: Albertiana, 28, 57–74.
45. KOZUR, H.W., 2005, Pelagic uppermost Permian and the Permian-Triassic boundary conodonts of Iran, Part II: Investigated sections and evaluation of the conodont faunas: Hallesches Jahrbuch Fur Geowissenschaften, Reihe B: Geologie, Palaontologie, Mineralogie, 19, 49–86.
46. KOZUR, H.W., 2007, Biostratigraphy and event stratigraphy in Iran around the Permian-Triassic boundary (PTB); implications for the causes of the PTB biotic crisis; Environmental and biotic changes during the Paleozoic- Mesozoic transition: Global and Planetary Change, 55, 155–176.
47. KOZUR, H., and MOSTLER, H., 1970, Neue C¬¬onodonten aus der Trias: Berichte Naturwissenschaftlichen-medizinischen Verin Innsbruck, 58, 429–464.
48. KӦNIGSHOF, P., 2003, Conodont deformation patterns and textural alteration in Paleozoic conodonts: examples from Germany and France: Senckenbergian alethae, 83, 149-156.
49. LEGALL, F.D, BARNES, C.R., and MCQUEEN, R.W., 1982, Thermal maturation, burial history and hotspot development, Paleozoic strata of Southern Ontario-Quebec, from conodont and acritarch colour alternation studies: Bulletin Canadian Petroleum Geology, 29, 492-539.
50. LEVEN, E.YA., and GORGIJ, M.N., 2009, Section of Permian Deposits and Fusulinids in the Halvan Mountains, Yazd Province, Central Iran: Stratigraphy and Geological Correlation, 17 (2), 155–172.
51. LI, H., JIANG, H., CHEN, Y., WIGNALL, P. B., WU, B., ZHANG, Z., ZHANG, M., OUYANG, Z., and LAI, X. 2019, Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic: Journal of Paleontology, 93 (3), 496-511.
52. LINDSTROM, M., 1964. Conodonts. Elsevier Publishing Company, Amsterdam, London and New York, 58s, 1-196.
53. METCALF, I., and RILEY, N.J. 2010, Conodont Colour Alteration pattern in the Carboniferous of the Craven Basin and adjacent areas, northern England: Proceedings of The Yorkshire Geological Society, 58, 1-8.
54. METCALF, I., NICOLL, R.S., WILLINK, R., LADJAVADI, M., and GRICE, K., 2013, Early Triassic (Induan–Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excursions and environmental perturbations: new data from Western Australian Gondwana: Gondwana Research, 23, 1136–1150.
55. MEYER, K.M., YU, M., JOST, A.B., KELLEY, B.M., and PAYNE, J.L., 2011, δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction: Earth and Planetary Science Letters, 302 (3–4), 378–384.
56. NICOLL, R.S., and CORTER, J.D., 1984, Conodont colour alternation, Thermal maturation and geothermal history of the Canning Basin, Western Australia: Australian Petroleum Exploration Association, 24, 243-258.
57. NOWLAN, G.S., & BARNES, C.R., 1987. Thermal maturation of Paleozoic strata in eastern Canada from conodont colour alteration index (CAI) data with implication for burial history, tectonic evolution, hotspot tracks and mineral and hydrocarbon exploration: Geological Survey of Canada Bulletin, 367, 1-47.
58. ORCHARD, M.J., 2005, Multielement conodont apparatuses of Triassic Gondolelloidea: Special Papers in Palaeontology, 73, 73–101.
59. ORCHARD, M.J., 2007, Conodont diversity and evolution through the latest Permian and Early Triassic upheavals: Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 93–117.
60. ORCHARD, M.J., 2010, Triassic conodonts and their role in stage boundary definition. In: Lucas, S.G. (Ed.), The Triassic Timescale. Geological Society, London, Special Publications 334, 139–161.
61. PAYNE, J.L., and KUMP, L.R., 2007, Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations: Earth and Planetary Science Letters, 256 (1–2), 264–277.
62. PAYNE, J.L., LEHRMANN, D.J., WIE, J.Y., ORCHARD, M.J., SCHRAGE, D.P., and KNOLL A.H., 2004, Large perturbations of the carbon cycle during recovery from the end-Permian extinction: Science, 305, 506–509.
63. PERRI, M.C., 1991, Conodont biostratigraphy of the Werfen Formation (Lower Triassic), Southern Alps, Italy: Bollettino della Società Paleontologica Italiana, 30 (1), 23–46.
64. PERRI, M.C., and ANDRAGHETTI, M., 1987, Permian–Triassic and Early Triassic conodonts from the Southern Alps, Italy: Rivista Italiana di Paleontologia e Stratigrafia, 93: 291-328.
65. POWELL, J.H., NICORA, A., PERRI, M.C., RETTORI, R., POSENATO, R., STEPHENSON, M.H., MASRI, A., BORLENGHI, L.M. and GENNARI, V., 2019, Lower Triassic (Induan to Olenekian) conodonts, foraminifera and bivalves from the Al Mamalih area, Dead Sea, Jordan: constraints on the P-T boundary: Rivista Italiana di Paleontologia e Stratigrafia, 125 (1), 147-181.
66. POWELL, J.H., STEPHENSON, M.H., NICORA, A., RETTORI, R., BORLENGHI, L.M. and PERRI, M.C., 2016, The Permian -Triassic boundary, Dead Sea, Jordan: transitional alluvial to marine depositional sequences and biostratigraphy: Rivista Italiana di Paleontologia e Stratigrafia, 122 (3), 23-40.
67. REJEBIAN, V. A., HARRIS, A. G., and HUEBNER, J. S. 1987, Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism and hydrothermal alteration: Geological Society of America Bulletin, 99, 471–479.
68. RICHOZ, S., KRYSTYN, L., BAUD, A., BRANDNER, R., HORACEK, M., and MOHTAT-AGHAI, P., 2010, Permian–Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution: Journal of Asian Earth Science, 39 (4), 236–253.
69. RUBAN, D.A., AL-HUSSEINI, M.I., and IWASAKI, Y., 2007. Review of Middle East Paleozoic plate tectonics: GeoArabia, 12: 35–56.
70. SAMANKASSUO, E., 1995, Early Triassic (Scythian) conodonts from the Werfen Formation, Southern Alps, Italy: Neues Jahrbuch für Geologie und Paläontologie, 4, 248-256.
71. SCHOBBEN, M., STEBBINS, A., GHADERI, A., STRAUSS, U., KORN, D., and KORTE, CH., 2016, Eutrophication, microbial-sulfate reduction and mass extinctions: Communicative & Integrative Biology, 9 (1), 1–9.
72. SEPHTON, M.A., LOOY, C.V., BRINKHUIS, H., WIGNALL, P.B., DE LEEUW, J.W., and VISSCHER, H., 2005, Catastrophic soil erosion during the end-Permian biotic crisis: Geology, 33 (12), 941–944.
73. SEYED-EMAMI, K., 2003, Triassic in Iran: Facies, 48, 91-106.
74. SOLIEN, M.A., 1979, Conodont biostratigraphy of the Lower Triassic Thaynes Formation, Utah: Journal of Paleontology, 53 (2), 276–306.
75. STAESCHE, U., 1964, Conodonten aus dem Skyth von Sudtirol: Neues Jahrbuch für Geologie und Paläontologie (Abh.), 119, 247–306.
76. STANLEY, S.M., 2009, Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions: Proceedings of the National Academy of Sciences (PNAS), 106 (36), 15264–15267.
77. STANLEY S.M., 2016, Estimates of the magnitudes of major marine mass extinctions in earth history: Proceedings of the National Academy of Sciences (PNAS), 113 (42), E6325–E6334.
78. STӦCKLIN, J., EFTEKHAR NAZHAD, J., and HUSHMAND ZADEH, A., 1965, Geology of the Shotori Range, Tabas area, East Iran: Geological Survey of Iran, 3, 1-69.
79. SUDAR, M.N., 1986, Triassic microfossils and biostratigraphy of the Inner Dinarides between Gučevo and Ljubišnja Mts., Yugoslavia: Geološki anali Balkanskog poluostrva, 50, 151–394 (in Serbian, English summary).
80. SUDAR, M.N., CHEN, Y.L., KOLAR-JURKOVŠEK, T., JURKOVŠEK, B., JOVANOVIĆ, D., and FOREL, M.B., 2014, Lower Triassic (Olenekian) microfauna from Jadar Block (Gučevo Mt., NW Serbia): Annales Géologiques de la Péninsule Balkanique, 75, 1–15.
81. SUN, Y.D., JOACHIMSKI, M.M., WIGNALL, P.B., YAN, C.B., CHEN, Y.L., JIANG, H.S., WANG, L.N., and LAI, X.L., 2012, Lethally hot temperatures during the Early Triassic greenhouse: Science, 338, 366–370.
82. SWEET, W.C., 1970, Uppermost Permian and Lower Triassic conodonts of the Salt Range and Trans-Indus ranges, West Pakistan. In: Kummel B., Teichert C. (Eds.), Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan. Department of Geology, University of Kansas, Special Publication, 4, 207–275.
83. SWEET, W.C., 1988. A quantitative conodont biostratigraphy for the Lower Triassic: Senckenbergiana lethaeo, 69, 253 -273.
84. SWEET, W.C., MOSHER, L.C., CLARK, D.L., COIIINSON, J.W., and HASENMULLER, W.A., 1971, Conodont Biostratigraphy of the Triassic: In: Sweet, W.C., Bergström, S.M. (Eds.), Symposium on conodont Biostratigraphy. Geological Society of America Memoir, 127, 441–465.
85. TORSVIK, T.H. and COCKS, L.R.M., 2004, Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review: Journal of the Geological Society, London, 161, 555–572.
86. TORSVIK, T.H. and COCKS, L.R.M., 2017, Earth History and Palaeogeography: Cambridge University Press, 1-317.
87. TWITCHETT, R.J., 1999, Palaeoenvironments and faunal recovery after the end-Permian mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 27–37.
88. TWITCHETT, R.J., 2007, The Lilliput effect in the aftermath of the end-Permian extinction event: Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 132–144.
89. VENNIN, E., OLIVIER, N., BRAYAD, A., BOUR, I., THOMAZO, C., ESCARGUEL, G., FARA, E., BYLUND, K.G., JENKS, J.F., STEPHEN, D.A., and HOFMANN, R., 2015, Microbial deposits in the aftermath of the end-Permian mass extinction: a diverging case from the Mineral Mountains (Utah, USA): Sedimentology, 62, 753–792.
90. WANG, H.M., WANG, X.L., LI, R.X., and WIE, J.Y., 2005, Triassic conodont succession and stage subdivision of the Guandao section, Bianyang, Luodian, Guizhou: Acta Palaeontologica Sinica, 44 (4), 611–626.
91. WANG, Z.H., and CAO, Y.Y., 1981, Early Triassic conodonts from Lichuan, Western Hubei. Acta Micropalaeontology Sinica, 20 (4), 363–375.
92. YAN, C.B., WANG, L.N., JIANG, H.S., WINGALL, P.B., SUN, Y.D., CHEN, Y.L., and ALI, X.L., 2013, Uppermost Permian to Lower Triassic conodont at Bianyang Section, Guizhou province, South China: Palaios, 28, 509–522.
93. ZHAO, L.S., ORCHARD, M.J., TONG, J.N., SUN, Z.M., ZUO, J.X., ZHANG, S.X., and YUN, A.L., 2007, Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation: Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 24–38.
94. ZHAO, L.S., TONG, J.N., SUN, Z.M., and ORCHARD, M.J., 2008, A detailed Lower Triassic conodont biostratigraphy and its implications for the GSSP candidate of the Induan–Olenekian boundary in Chaohu, Anhui Province: Progress in National Science, 18, 79–90.
95. ZHENG, Y., XU, R., WANG, C., MA, G., LAI, X., YE, D., CAO, L., and LIANG, J., 2007, Discovery of Early Triassic conodonts in western Gangdisê and the establishment of the Tangnale Formation: Science in China Series D- Earth Sciences, 50 (12), 1767-1772.