بررسى دگَرگّنى پســرونده در سنگگَهاى كالكـسيليكات در هاله دگَگَونى الوند

هاله قربانى (" "‘، محسن موذنّ

تاريخ يذيرش: 94/M/TMA

چچكيده

وارْههاى كليدى: باتوليت الوند، دَرَكونى پسرونده، فرآيندهاى دگَرَّونى، كالكــ سيليكات، همدان.

دكرَكونى ناحيهاى كه تا رخســـاره شيست سبز و آمفيبوليت

مقدمه

 ميگّماتيتها، بافتهاى هورنفلســى و مجموعه كانىهايى
 مجاورتــى ناشــــ از نفوذ باتوليـت الوند، تحــت تأثير يـى

مقدار $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ ســيالات دگرگونى بســيار حســاس هســتند و اين نشاندهنده اهميت تركيب سيالات در طول دگرگونى اين ســنتگها اســت (Moazzen et al., 2009). بنابراين مطالعه ســنـگْهاى كالكـ - سيليكات مـهم به نظر مىرســـد. در اين تحقيق سعى شده است با در نظر داشتن رخنمون اين سنگها در اطراف باتوليت الوند، كه با استفاده از مجموعــه كانيايــى در طـــول فرايند دگرگونــــى مجاورتى انـى تشكيلشده است، شرايط فيزيكوشيميايى و دماى تشكيل سنگگهاى كالك - سيليكاته مورد مطالعه قرار گیرد.

موقعيت زميـنشـناسى

منطقــه مطالعاتى از لحــاظ تقســيمات جغرافيايى در اســتان همدان در غرب كشــور، بين طول هاى جغرافيايى
 ".." و و از ديدگًاه زمينشناختى ســاختارى (Stocklin, 1968) در محدودهى زون ســنـندج - سيرجان جاى گرفته است. زون سنندج- سيرجان پرتكايوترين پهنه ساختارى ايران است كه فازهاى دگرگونى و ماگماتيســـم مهمیى را پشت سر گذاشته اسـتـ. اين زون ميزبــان تودههاى گرانيت زيــادى ازجمله باتوليت الوند مىباشد، داراى طولى در حدود ••10 و عرض حدود •• ك كيلومتر اسـت كه از شمال غرب تا جـا جنوب شرق كشــور ادامه دارد (شكل ا-a). سنگگهاى آذرين و دگرگونى در منطقــه همدان و بهخصوص در مجــاورت باتوليت الوند موردتوجه زمين شناسان متعددى قرارگرفته و تاكنون درباره كانىشناسى و سنگگشناسى اين منطقه پ夫وهشههاى زيادى صورت گرفته اســت (زرعيان و همكاران، •هاז|؛ بهارى فر،
 2004; Saki, 2011; Saki et al., 2012) مسئله دگرگونى ناحيهاى و تكتونيك فعال (به سبب وجود راندگىهاى متعدد) موجب پیچییدگى وضع ســاختمانى در اين منطقه شــده اســت و به لحاظ وضع تكتونيكى خاص اين زون ســاختارى، ارتباط واحدهاى رسوبى بهطورمعمول گسله است. گسل موجود در منطقه برداشت نمونهها، گسل چشـــين - سيمين مىباشد كه اين گسل با روند كلى شمال

كه جايگزين كانىهاى پيشــين شـــدهاند، تعريف مىشــوند Saki., 2011; Baharifar et al., 2004) (I YV\&) سنگهاى ميگماتيتى در جنوب باختر باتوليت الوند قرار دارند. بيشترين مطالعات در همدان بر روى سنگَهاى
 در بعضى مناطق اســتان همدان به مطالعه اســكارنهاى تشكيلشـــده در طـــى دگرگونى ناحيهاى نيز پرداختدشــــده
 ســيليكات تشكيلشـــده در هالــه دگرگونى الونـــد واقع در روستاى چشين، كمتر مورد توجه قرارگرفتهاند. مطالعه ســنگَهاى آهكى دگَرگونشـشــده با اين كه فقط بخش كوچكى از پوسته زمين را تشكيل مىدهند، اما چون دگرگونـــى آن ها اطلاعات مهممى در مورد تركيب فاز ســيال در حين تبلور ماگَما، تأثير آن بر پايدارى مجموعه كانىهاى دگرگونى و شــرايط P , T و تشــكيل هورنفلس ها به دست مىدهند اهميت قابلملاحظهاى دارنــد (Spear, 1993). كربناتهاى دگرگونى بهطور بخشى با سنگگهاى مجاور خود (سنگَهاى رســى دگَرگونشده) در حال تعادل نمىیباشند. تراوش ســيالات آبى، سبب گسترش واكنشههاى دگرگونى، بهخصــوص در كربناتهايــى مىشـــود كه در مرز هســتنـن (Agu, 2002). بهعــلاوه مجموعه كانىهاى خاصى مانند
 سيليكاتهاى كه تحت نفوذ سيالات غنى از آب قرارگرفتهاند بــه وجــود مىىآينــد (Cartwright and Oliver, 1992). واكنششهــا و مجموعه كانىهاى تشكيلشـــده در دگرگونى مجاورتــى بهطور طبيعى بهخصوصيات ســنـگْهاى نفوذى و ميزبان، تركيب ســيالات متاسوماتيســم كنـنده، فشــار كل و رزيـــم دمايـى مربــوط مـشــــوند (Meinert, 1998). اكر ســيالات در حجمههاى مناســبـى وجود داشــتـه باشند مىتوانـــد باعث ذوب بخشــى، انتقال گرمــا، دگرگونى و تغيير شــكل بلورها و همچچنين انتقال فلزات براى تشــكيل كانســـارهاى اقتصادى شوند. در مطالعهى سنگگهاى كالكـ - ســيليكاته تعادل فازهاى كانىشناسى در حضور مخلوطى
 مجموعــه كانىها در ســنتگهاى كالك - ســيليكات، به

گاهی همزمان نيز شكلگرفته باشند (سپاهی، INAV).

گرانيت الوند

اين گرانيت داراى بافت پورفيرى بسيار مشخص مىباشد،
 ده سانتىمتر مىرسد. از ويزگگىهاى شايان توجه اين گرانيت وجــود بيگانه ســنتگهايى از جنس گروناتيـت و از بيگًانه ســنگـهاى بســيار ميكادار و بيگانه بلورهايى از آندالوزيت، سيلمانيت، كرديريت و گارنت است. گاهى بيگانه سنگگهايى از جنس گابرو نيز در آن ديده مىشيرد سنگگها عبارتند از: فلدسپاتهاى قليایی، كوارتز، بيوتيت، كمى كارنت، آندالوزيت، سيلمانيت و كرديريت كه كانىهاى

 تــا اليگوكلازنــد. كانىهاى فرعى اين ســنـگـها عبارتند از:
 تقسيمات سنگَنگاشتى اين سنگَها گرانيت، گرانوديوريت، مونزوگرانيت و سينوگرانيت هستند و همه آن ها مزوكراتاند. در درون اين توده گرانيتى و بيشتر در حاشيه آن بخشهايى

منطقه همدان وجود دارد (شكل ا-b) كه عبارتند از: ا. سنگْهاى آذرين: سنگهاى آذرين اين مجموعه شامل ســنگهاى مافيك (گابرو، اليوين گابــرو، گابرو نوريت، دولريت)، حد واســط (ديوريـت، كوارتز ديوريت، ميكرو ديوريت)، فلســـيك (گرانيتها، گرانوديوريت، توناليت، پگَماتيت و آپليت) و تعدادى دايكـهاى دولريتى و كوارتز دولريتى است كه سن آنها به ترتيب از •\ التا •¢ ميليون

سال قبل در نظر گرفتهشده است (سپاهى، ITVA). Y. . ســنگگهاى مجموعه دگرگونى همدان كـــه در مراحل مختلف دگرگونى ناحيهاى و مجاورتى تشكيلشدهاند: ســنگگهاى دگرگونــى ناحيهاى: اين ســنـگَها باه ســن پالئوزئيـــى تا اوايل زوراســيك، قديمىترين تشــكيلات زمينشناســى منطقه را تشكيل دادهاند كه اغلب شامل: اســليت، فيليت و انواع شيستها هســتنـد. در مورد نوع

باخترى- جنوب خاورى و به درازاى 1 كيلومتر، تا روستاى ســيمين، مرز ميان دترگونى ناحيـــاى و مجاورتى امتداد يافته اســت. و در دره ارزان فود با گســل ديگر با راســتاى همرجهت مىگردد. شيب گسل V•NE-SW

آن معكوس مىباشد (اقليمى، (ITV9).

مـجموعه پلوتونيك الوند

مجموعه پلوتونيك الوند در بخش شــمالى نوار دگرگونى ســنـندج - ســيرجان، يكى از تودههاى نفوذى مهمم به شمار
 زمين ســاختى مرتبط با كمان قارماى در يكـ رزيم كششى در طى فرورانش اقيانوس نئوتتيس به زير ســنـندج - ســيرجان نفــوذ كــرده اســت (Shahbazi et al., 2010). ايــن توده از گرانيتوئيدهــاى پورفيــرى، گرانيتوئيدهــاى لوكوكرات و ســنگتهاى مافيكـ تشكيلشـشـده است (ســـاهی، IVVA). تودههــاى آذرين مافيكى تا حد واســط (اليويــن تابرو، گابر، گابرو نوريـت، ديوريت، كوارتز ديوريـت و توناليت) قديمىتر از پلوتونهاى گرانيتى مشـــتق شده از پوسته (باتوليت الوند) در منطقه هســتند (Valizadeh and Cantagrel, 1975)،
 (Shahbazi et al., 2010). نتايج ســن سنجى U-Pb نشان داده اسـت كه تمام گرانيتوييدها در طى زوراسيكى و پيش از كرتاســه به وجود آمدهاند (Shahbazi et al., 2010). منشا بخشههاى گرانيتى و گابرويع توده توســط محققان مختلف موردمطالعه قرارگرفته است. سپاهى(IYVA) منشا سنگیهاى گابروبی، ديوريتى و توناليتى الوند را ماگماى تولئيتى با منشا كوشتهاى و منشا گرانيتهاى پورفيروئيد را پوستهاى در نظر
 فرآيند متاسوماتيسم مربوط به تأثير سيالات گرانيتى بر روى گابروها مرتبط مىیاند. با اين كه در مجموعه الوند سنگگهاى مافيــع - حد واســط (تابروهــا، ديوريتهـــا و توناليتها)، اغلــب قديمىتـــر از ســنگگهاى فلســـيكـ (گرانوديوريتها و مونزوگرانيتها) هستند و بين آن ها گسستگگى كانىشناسى و زئوشيميايى ديده مىشود، ولى شواهدى وجود دارد كه نشان

$$
\begin{aligned}
& \text { اطراف توده نفوذى الوند قرار دارند. هورنفلس شيسـتـها و } \\
& \text { هورنفلسها تنوع زيادى دارند. } \\
& \text { ميگماتيتهــاى منطقـــه را نيــز مىتــــوان به دو دســتـه } \\
& \text { ســيليمانيت ميگماتيت و كرديريت ميگماتيــت ردهبندى كرد }
\end{aligned}
$$

نوع دگرگونىها از نوع دما و فشــار متوسط، تيپ بارووين
(كيانيت - سيليمانيت) مىباشــد. بهارىفر (I (I) نوع
دگرگونى ناحيهاى سنگگهاى منطقه همدان را فشار پايين-
دما بالا و مربوط به يك قوس ماتمايى مىداند.
(Saki et al., 2012)

شكل (. a.) موقعيت زمين ساختى زونها در باختر ايران (Mohajjel et al., 2003)، موقعيت زون سنندج - سيرجان و منطقه مورد مطالعه،

اســت كه با چشــم غيرمســـلح نيز قابل مشــاهده اســت

مطالعات صحرايى

 در منطقه مورد مطالعه ســبب گسترش كانهزايـى و تشكيل كانىهاى اكســيدى مانند هماتيت شده است (شكل آ- C- . پس از بررسـى مقدماتى نمونههاى صحرايى بهدستآمده از ميان نمونههاى جمعآورىشـــده Y Y نمونه كه مناسبترين ســنتَها ازنظر شرايط هوازدگى و دگرســـانى بودهاند، براى تهيه مقاطع نازكى و بررســىهاى سنگـشناســــى انتخاب و تفكيك شدند. در استان همدان انواع متنوعى از هورنفلسها هستند كه با فاصله گرفتن از توده نفوذى الوند درجه دگرگَونى اين سنگَها
 در حدود چندين متر در مجاورت شيستها و هورنفلس هـایى ديگــر در منطقه مطالعاتــى رخنمون دارند (شــكل ار- a-a). رنــگ ســبز در بعضى ســنـگگها به دليل حضــور كانىهاى فرومنيزيـن اپيــدوت، ترموليت/ اكتينوليت (شــكل اســت. در اين ســنگیها اندازاه برخــى از بلورها بهگونهاى

شكل؟. a.) رخنمون هورنفلسها در منطقه مورد مطالعه، ديد به سمت جنوب، b.) بلور درشت زوئيزيت در مجاورت كلسيت در سنگَهاى

و نيز محــدود بودن آنها به مرز بعضــى از كانىها، تحرى
 ســنتگهاى دگرگونى نشـــاندهنده عدم تعادل اســت و در چی افت و كاهش دما، ناشـــى از دگَرگونى پســرونده تشكيل مىیردد. در اين ســنگتها كانى كلســيت با رخ رومبوئدرى ويزه خــود داراى اندازه متغير از ريزبلور تا درشــتبلور بوده و داراى اشــكالى متفاوت از ايديوبلاســتـى تا زينوبلاســتى در ار مى باشد (شكل rبسيار كوچك در محل مرز دانههاى كلسيت (شكل با - e, ب) و يــا در گارنــتـ بهصورت هم رشـــدى و يا در حواشــى آن تشكيلشــدهاند. كوارتزها با خاموشى موجى (شكل بـ - c) خود اغلب داراى بافت مضرسى و بیشكل در بين كانىهاى ديگر مىباشــند. مسكوويت (شكلז- - f,c) در مقادير فرعى در برخى از نمونهها ديده مىشــــود. ترموليت - اكتينوليت را معمولاً با توجه به رخ و شــكل كشيدهاى كه دارند بهخوبى مىتوان تشخيص داد. جهتگيرى موازى كانىهاى آمفيبول در برخى از نمونهها ديده مىشـــود. در منطقه مورد مطالعه مرز بين دو پروتوليت رسى و آهكى ازنظر تنوع كانىشناسى مشـخص و واضح اسـت بهطورىكه كانىهـــاى ترموليتاكتينوليت، زوئيزيت در اندازههاى مختلف ديده مىشـــوند.

سنگگهاى كالک- سيليكات مطالعه شده عاوه برداشتن كلســيت و كوارتز داراى مقادير بالايى كانىهاى ســـيليكات آلومينيوم مانند وزوويانيت، ترموليت - اكتينوليت، كارنت و اپيدوت حاصل دگرگونى مجاورتى مىباشند (شكلr-a c ,a) (جــدول ا). در اين ســنتگها كانىهاى كالكـــ ســيليكات فازهاى اصلى را تشــكيل مىدهند كـــه در تمامى پارازثزهـا كانىهاى كوارتز، كلسيت و كانى تيره بهعنوان فازهاى اضافى در سيســتم در نظر گرفتهشــده است (شـكلّا a). بافت ميكروسكويى در اين نمونهها اغلب گرانوبلاستيكى مىباشد (شكل پورفيروبلاســتيك (شـكل زينوبلاســتيك نيز مشاهده مىشود و همچچنين در بعضى از نمونههاى بافت سيمپِلكتيت به چشم مى خورد (شكلّ -f-). تشــكيل ســيمپلكتيت در ســنگْهاى دگرگونى منطقه را مىتوان به واكنش بين پورفيروبلاستها نسبت داد. در واقع احتمال دارد كه تمركز محلولهاى غنى از آب در امتداد مرز دانهها در حين سرد شـــن يك سنگَ و يا نشت محلولهها در خـــلال يكى حادثــه دگرگونى بعدى، ســرعت واكنثـهـا را زيــاد كنــد. ريزدانه بودن همرشــدىهای ســــيمپـلكتيت

و داراى خاموشى مايل در اين سنگ־ها ديده مىشود. علاوه بر كانى اپيدوت در اين سنگَها زوئيزيت و كلينوزوئيزيت نيز وجود دارند (شــكل ץ- c). در مقاطع مطالعه شده گرافيت نيز حضور دارد كه مقــدار گرافيت در بعضى از نمونهها زياد و در بعضــى ديگَـر كم مىباشـــد. بهطوركلــى گرافيت يكـ كانى مشــخص در ســنـگهاى دگرگونى مانند شيستهاى دگرگونى، گَنيس، اسليتها و سنگْهاى آهكى دگرگَونشده اسـت و بهعبارتديگَر رنگَ خاكســترى خيلى از سنگیهاى دگرگونى به علت وجود همين كانى است (سرابى، مقادير اندكـى كانى فرعى هماتيت در تعدادى از نمونههاى سنگى بهصورت پراكنده مشاهده مىشود.

رگَهاى زوئيزيت- كلينوزوئيزيت دار درون سنگهاى كربناته و بلافصل سنگَهاى رسى و آهكى ديده مىشود. كانىهاى اصلــى موجــود در ســنگهاى كالكـ - ســيليكات منطقه همدان شــامل اپيدوت، آمفيبول (ترموليت- اكتينوليت)، كلســيت، گارنت، وزوويانيت و ... به همراه كانىهاى فرعى كلريت، اســفن، گرافيت و هماتيت مىباشند. اپيدوتها را با برجســتگى بالا و بى رفرنزانس بالا مىتوان شــناخت. در درجات پايين دگرگونى، اپیدوت به همراه كلســيت و كوارتز بهصورت گرانوبلاســتيكى ديده مىشود (شـكل بـ e e). در برخى نمونهها ديوپسيد براثر دگرگونى پسرونده به ترموليت تبديلشده است. وزوويانيت معمولاً با رنگَ خاكسترى يا آبى

شـكل

 (PPL)

```
هاله قربانى و همكاران
```

(Whitney and Evans, جدول ا. مجموعه كانىهاى دگَرگونى در سنگَهاى كالك - سيليكات در همدان. علائم اختصارى كانىها از (0) (2010 است.
$\mathrm{A}=$ Alteration, $\mathrm{O}=$ Minor phase $(<5 \%), \mathrm{X}=$ Major phase $(>5 \%$)

Sample No	GR	Cal/Dol	Qz	Ep	Cpx	Hbl	Grt	Zo	Mo	Ves	Act/Tr	Hem	Texture	Rocktype
ChelC	O	X	X	X			X				X		Poiikiloblastic-GranoblasticNematoblastic	Cpx- Tr- Act-Grt Calc-silicate
Che1D	O	X	X	AX	X		X			O			Poiikiloblastiporphiroblastc	Grt-Cpx Calcsilicate
ChelE	X	X	X	AX	X		X						Poiikiloblastiporphiroblastc	Cpx-Grt Calcsilicate
ChelF	O	X	X	AX	X		X					O	Poiikiloblastiporphiroblastc	Cpx-Grt Calcsilicate
ChelG	O	X	X	AX	X		X					O	Poiikiloblastiporphiroblastic	Cpx-Grt Calcsilicate
Che1J	X	X	X	X				X	O			O	Granoblastic	Zo- Ep Calcsilicate
Che1K	X	X	X	AX	X		X	X				O	PoiikiloblasticGranoblastic	Cpx- Grt- Zo Calcsilicate
Che1L	O	X	X	AX	X		X					O	PoiikiloblastiGranoblastic	Cpx- Grt Calcsilicate
ChelM	O	X	X	AX	X	O	X						PoiikiloblasticGranoblastic	Grt- Cpx Calcsilicate
Che3	O	X	X	AX		O		X	O		X	O	Granoblastic-SympleticNematoblastic Poiikiloblasti-	Ep- Tr/Act- Zo Calc- silicate
Che 4	X	X	X	AX	X		X	O					GranoblasticZinoblastic Poiikiloblasti-	Cpx Calc- silicate
Che5	O	X	X	AX	X		X					O	porphiroblastcGranoblastic Poiikiloblasti-	Cpx- Grt Calcsilicate
Che8	O	X	X		X		X					O	porphiroblastcGranoblastic	Grt- Cpx Calcsilicate

(واكنشهاى Y، r،
 رخداده و ناشــى از سرد شدن توده و نفوذ سيالات بوده است. كانىهاى تشكيلشده در اين مرحله معمولاًاز نوع آبدار مانند اپپدت، آمفيبول و ... مى باشند (واكنش و (F (شـكل در درجات پايين دگرگونى شكلگرفته است. محصولات دگرســانى پســرونده مثل كلريت و ترموليت، بهصورت ســودومورفهاى كامل در كانىهاى دما بالاتر تشكيل

بــا توجه به مطالعــات پتروگرافى پارازثزهـــا (جدول ()، مشخص گرديد كه دگرگونى در منطقه مورد مطالعه طى دو مرحله صورت ترفته است: ا. دگرگونى پيشــرونده: در مرحله اول كــهـ اوج دگرگونى اســت و بهصــورت پيشــرونده رخداده اســت اثرهاى گرمايى همزمان با جاىگيرى و تبلور توده نفوذى باعث

 كلينوييروكســن و وزوويانيت تشـكيل ترديده اسـت

مجموعه كانى بدون ترموليت: اين سنگّها خارجىترين

 تشكيلششـده اســت. اين مجموعه عمدتاً داراى بافت CO_{2}

 مىشوند. اين مجموعهها داراراى كرافيت و همحنّنين هماتيت به مقدار جزيى مى مباشند.
مجموعه كانــى داراى ترموليت: با دور شـــدن از توده، ترموليتها از شكســته شـــدن كلينوييروكســنـهانـاى اوليه
 برجســتگى نسبتاً زياد با بىرفرنزانس متو متوسط تا نسبتاً قوى

نماتوبالاستيك مىىباشد.

 در بعضى نمونهها در مجاورت كـلسيت

 هورنبلند ظاهر شدهاند.

مىشـــوند. در درجات دگَرگونى پايينتـــر، معروفترين
 بيوتيت و كارنت اسـت. باعلاوه، تشكيل سيميلكتيت (شكل r - f) مثل ميرمكيت معمولاً با افت دما همراه است، ولى معمولاً در امتداد مرز دانهمها و در امتداد امن انقاط

 است (Einaudi et al., 1981). سيليكاتهاى كلسيم آبدار و كانىهاى تيره مانند هماتيت در طى دكرگّونى پپرونده تشكيلشدهاند. علاوه بر اين مطالعات نشان مىدهد كه بلورهاى كارنت در نمونهها به دو گر كروه تقسيم مى شوندي

كروه باعث ايجاد بافت يوئى كيلوبالاستيك شده شا است.

مجموعـه كانىهايى كــه در ســنـتاهاى منطقه مورد
 مبناى وجود كروههاى مختلف آمفيبولى مىتى دوان تقسيم كرد (جدولץ):

مجموعه كانى هاى دكرَكونى		درجه دكركّونى
مجموهه كانىماى بدون ترموليت	Qz + Cal + Ep	
مجموعه كانىهاى داراكاى ترموليت	$\mathrm{Qz}+\mathrm{Cal}+\mathrm{Ep}+\mathrm{Tr} / \mathrm{Act}$	كايين
مجموعه كانى هاى داراى هورنبلند	$\mathrm{Qz}+\mathrm{Cal}+\mathrm{Ep}+\mathrm{Hbl}$	متوسط

كانىها مىتوان واكنشهاى زير را در نظر گرفت (شكل ه):

1) $2 \mathrm{Ep}+\mathrm{CO}_{2}=\mathrm{Cal}+3 \mathrm{An}+\mathrm{H}_{2} \mathrm{O}$
2) $3 \mathrm{Cal}+2 \mathrm{Qz}+\mathrm{Tr}=5 \mathrm{Di}+3 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3) $2 \mathrm{Qz}+\mathrm{Dol}=\mathrm{Di}+2 \mathrm{CO}_{2}$
4) $3 \mathrm{Cal}+\mathrm{Tr}=4 \mathrm{Di}+\mathrm{Dol}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
5) $8 \mathrm{Qz}+5 \mathrm{Dol}+\mathrm{H}_{2} \mathrm{O}=3 \mathrm{Cal}+\mathrm{Tr}+7 \mathrm{CO}_{2}$
6) $2 \mathrm{Qz}+\mathrm{Tr}+6 \mathrm{Czo}=5 \mathrm{Di}+9 \mathrm{An}+4 \mathrm{H}_{2} \mathrm{O}$
7) $\mathrm{Tr}+6 \mathrm{Ep}+2 \mathrm{CO}_{2}=4 \mathrm{Di}+9 \mathrm{An}+\mathrm{Dol}+4 \mathrm{H}_{2} \mathrm{O}$

واكنشهاى دَرگَونى در سنگَهاى كالكـ - سيليكات

 در اثر دگرگونى، كانىهاى سيليكاتى كلسيمرو آلومينيومدار مانند

 تشكيلشــدهاند. اپيدوت مىتواند از شكسته شدن كانىهای رسى مانند مارگاريت نيز تشكيل مىشود. با توجه به مجموعه

- (\%)

ACF-(Qz, H2O, CO2 $)$ شكل \&

شكل ه. واكنشههاى رخداده در حين دگرگونى برگشتى

در هالــه دترگَونــى الوند، شــاهد ســنتَهاى كالكــ ســيليكاتى هستيم كه بيانگر شرايط پســرونده و دما پايين مى باشند، بهطورى كه نفوذ سيالات به اين سنگگها باعث اين

 باتوليت الوند نشان دادهشده است:

٪ 「. تشكيل فازهاى آبدار مانند آمفيبول، در حضور كانىهاى
 مطالعه، حضور فاز ســيال غنــى از

 نشـاندهندمى كاهش فعاليت XCO2 به دليل تأثير فاز
سيال غنى از H2O است.

سپاسگَزارى

 سازمان زمينشناسى و اكتشافات معدنى.
 زون سنندج - سيرجان، منطقه همدان. پاياين انامه كارشناسى ارشد، دانشگاه تربيت معلم، تهران، ايران.
 منطقه همدان، پاياننامه دكترى، دانشگاه تربيت معلم تمران.

 و دايك هاى همزمان با پلوتونيسم در تفسير تحول ماكَمايى آيى

$$
\text { چاپ دانشگًاه تهران، } 191 .
$$

 كارشناسى ارشد، دانشگاه تمران.

مجموعـهـ پِلوتونيك الونــد در منطقه، عامــل اصلى و

 سنگگهاى دگرگونى كالك - سيليكاته شده است است. فشارها ناشــى از بالا آمدن و جاى
 ايجاد شده ناشى از سـيـالات بهعنوان معبرى مناسب براى هجوم و ورود سيالات متاسوماتيسم كننده به درون مرمره مانـا و سنگَهاى آهكى ناخالص عمل كردهاند. سنگگهاى كالى كالك

 كه دَرگَونى پســرونده در منطقه اتفاق افتاده اســت و ونتايج حاصل از اين مطالعه عبارت است از:

 و نفوذ سيالات رخداده است.

 شرايط فشار بر سنگَهاى دكَركَون را نشان مىديدهد.

هاله قربانى و همكاران

- Saki, A., 2011. Formation of spinel-cordierite-plagioclase symplectites replacing andalusite in metapelitic of the Alvand aureole, Iran. Geological Magazine 148, 423-434.
- Saki A., Moazzen, M. and Baharifar, A.A., 2012. Migmatite microstructures and partial melting of Hamadan metapelitic rocks within the Alvand contact aureole, western Iran. International Geology Review, 54(11), 1229-1240
- Sepahi, A.A., Whitney, D. L., and Baharifar, A.A., 2004. Petrogenesis of And-Ky-Sil veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran. Journal of Metamorphic Geology 22, 119-134.
- Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C. K., and Vousoughi Abedini, M., 2010. Geochemistry and $\mathrm{U}-\mathrm{Pb}$ zircon geochronology of the Alvand plutonic complex in Sanandaj- Sirjan (Iran): New evidence for Jurassic magmatism. Journal of Asian Earth Sciences. 39, 668-683
- Spear, F.S, 1993. Metamorphic phase equilibria and pressure - temperature - time paths. Mineralogical Society of America Monogeraph Series 1, 779.
- Stocklin, J., 1968. Structural history and tectonics of Iran, a review. American Association of Petroleum Geologists Bulletin, 52(7), 1229-1258.
- Valizadeh, M. V. and Cantagrel, J.M., 1975. Premieres donnees radiometriques (K-Ar et $\mathrm{Rb}-\mathrm{Sr}$) sur les mica du complexe magmatique du Mont Alvand pres Hamadan (Iran Occidental). Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie D. Sciences Naturelles, 281, 1083-1086.
- Whitney, Donna L. and Evans, Bernard W., 2010. Abbreviation for names of rock forming minerals. American Mineralogist, 95, 185-187.

```
سيليكات در هاله دگرگونى الوند، پاياننامه كارشناسى ارشد،
    دانشگاه تبريز.
```



```
اســكارنهاى تشكيلشـــده در طى دگرگونى ناحيهاى در
```



```
زمينشناسى دانشــگاه پیام نور، كرمان، دانشگاه پیام نور
    مركز كرمان.
```

- Agu J. J., 2002. Gradients in fluid composition across metacarbonate layers of the Wepawug Schist, Connecticut, USA. Contributions to Mineralogy and Petrology 143, 38-56.
- Baharifar, A., Moinevaziri, H., Bellon, H. and Pique, A., 2004. The crystalline complexes of Hamadan (Sanandaj- Sirjan zone, western Iran): (metasedimentary Mesozoic sequences affected by Late Cretaceous tectono- metamorphic and plutonic events, Comptes Rendus Geoscience, 336, 1443-1452.
- Cartwright I. and Oliver N.H.S. 1992. Direction of fluid flow during contact metamorphism around the Burstall Granite, Australia. Journal of the Geology Society of London, 149, 693-696.
- Einaudi M.T., Meinert L. D. and Newberry R.J., 1981. Skarn deposit. Economic Geology, 75th Anniversary, 317-391.
- Meinert L.D., 1998. Appplication of skarn zonation models exploration. Exploration and Mining Geology, 6(2), 185-208.
- Moazzen, M., Oberhänsli, R., and Hajalioghli, R., 2009. Whole rock and relict igneous clinopyroxene geochemistry of ophiolite- related amphibolites from NW Iran-Implication for protolith nature. N. Jb.Miner.Abh., 185(1), 51-62.
- Mohajjel, M., Fergusson, C. L., and Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental, Sanandaj- Sirjan Zone, western Iran, Journal of Asian Earth Sciences, 21, 397-412.

