يورفيرى بارملك (شمال ورزقان-استان آذربايجانشرقى)

عليرضا روانخواه (ا""، محسن مؤيدّ و على لطفىيبخش'

Y. Y. استاد، گروه علوم زمين، دانشكده علوم طبيعى، دانشگاه تبريز

تاريخ دريافت: 99/F/F/F

Abstract

جـكيله گَتره اكتشافى بارملك در شمالغرب كشور، استان آذربايجان شرقى و شمال شرق شهرستان ورزقان قرار دارد.

مقلمـه

گستره اكتشـــافى بارملك در شمالغرب كشور، استان بارملكى، اين مناطق ز ديرباز مورد توجه زمينشناسان بوده

 منطقه اكتشافى در شكل ا نشان داده شده است. "

تشكيل اين كانسارها را كنترل مى كننـد (Sillitoe, 1998). ثابت شده است كه تشكيل كانسارها هاى مس يور يورفيرى نه تنديا
 تكتونيكى ناحيهاى نيز در زمان تشكيل اين كاين كانسارها ها تأثيركَذار است (Sillitoe, 1994؛ Richards et al., 2001). تشكيل كانسار هاى مس يورفيرى در قوسهاى ماگَمايى كالكآلكالن

 تحتانى است (Richards, 2005). در مناطق حاشيه فـال
 آلكالن (شوشــونيتى) نيز مشــاهده مى اششــوند (, Sillitoe (1989, 1993, 2000؛ Richards, 2005 در اين مناطق در طول گسلى قديمى قرار گرفتتهاند كه تراوائى
 معتقد اســت كه تركيب سيســتمههاى Richards (2005)
 كالكـآلكالن مى ماشد كه از يك ماكَماى مافيكتر كوشتدانى

 فثــار يكـ تا دو كيلوبار و عمق معادل جاىگيرى مىكنند (Guilbert and Park, 1986).

روش مطالعه

 مغزههاى گمانههاى حفارى شده توسط شركت ملى صن صنايع

 تهيه مقاطع ميكروسكوبىى و صيقلى انتخاب شده انداند كه نتايج

 پارس 'ولنگگ مورد استناد قرار گرفتند.

شكل ا. . را المای دسترسى به كَستره اكتشافى بارملك (براساس نقشه

كانسارهاى يورفيرى از مـهمترين منابع مس و موليبدن

 دارند. كانسارهاى مس يورفيرى اغلب تناز بالا، عيار بايين، غير همزاد و درونزاد بوده (Titley and Hicks, 1966) ويناي

 Zarasvandi et) مرتبط با فرورانش يوسته 'قيانوسى داني

 تتيس قرار دارنــد (Waterman and Hamilton, 1975). در ايران ســنـانـهاى ولكانوپِلوتونيك كالكـآلكالن در كمان
 Cu L دارنـــد، بهطورى كانسارهاى مس يورفيرى ايران در شمال غرب تا جا جنوبشرق اروميه-دختر واقع شـــداند (Hassanpour et al., 2015; (Ayati et al., 2008; Shahabpour, 1999 جايكَاه تكتونيكى بخش عمدهاى از كانسارهاى مس يور يرفيرى در حاشيه صفحات همگًا (حواشـــى فعال قارمانى و جزاير
 بارز در نواحى فرورانش مرتبط با قا رهما و جزاير كمانى گسيل
 مناطق مىباشد، باينحال فاكتورهاى متالورْنيك ديگرى نيز

منطقه شده اسـت. پس از جايگيرى اين توده، دايكهایی
 اين منطقه به داخل استوى كوارتزمونزونينيتى نفوذ كردرداند.

 پيرامونى و تسهيل گرشش ســــيـيالات گرمابى شده كه منجر

 ســاختمانى در قوس آتشفشـــانى پس برخور ياردى و حواشى

 كوارتزديوريتى نســـل دوم با برجستتى مشا مشخص و م مقاومت

 ائوسن شامل تناوبى از گداز هماى آندزيتى تا تا آندزيت بازيا التى
 نمايى از اين سنگَعا مشاهده مىشوند.

بحث

سنگَـنگَارى
 حفارى و نمونههاى سطحى منطقه اكتشافى، توده نفونى

 متنوع مىباشند. توده كوارتزمونزونيت يورفيرى شــامـل فنوكريستارينالهاى نيمدشكل دار يلازيوكالازاست كه در خميرهر ريز تا درشتوبلورى

زمينشناسى منطقه مورد مطالعه

در بخـــش جنوب منطقـــه مورد مطالعه، ســـنتـهاى ولكانيكى و ولكانو-كلاستيكى ائوسن سنگیهاى درونگير تون بارملكى پورفيرى را تشكيل مىیهنـد و سنگـاهاى ولكانيكى و ولكانو-كلاستيكى پليو-كواترنر با دگرشيبى آذرينيى بر روى اين مجموعهها قرار گرفتهاند (شكل Y). در شمال كيقال و شمالشـــرق بارملك همبرى اين تودهها با ماسهسنگیهاى نوموليتدار ائوسن گزارش شده است. همچچنين گدازههابى
 بارملك و شـــمال غرب آن گزارش شــــدهاند كهـ ارتباط سنى آن با بقيه واحدها مشـــخص نيســت و وليل انتساب اين
 سابولكانيكى پليوســـن با تركيب داسيتى، تراكيى آندزيتى و

 بازالتى به ســن كواترنر است كه در شمال روسا رستاى بار بارملـى

 شــباهت زيادى به توده كوارتزمونزونيتى ســونگَون دارد در

 با راستاى تقريبى N S كشيده مى میود. در اين مدحل توده با توفها و سنگـهاى ولكانيكى ائوسن دارای همبرى مشخصى اســت و باعث توسعه كانىسازى سرب و روى در سنگگهاى درونگير شده 'ست. استوك كوارتزمونزونيت يورفيرى كيقال
 آتشفشـــانى قديمىتر نفوذ كرده و موجب كانى موليبدن پورفيرى و گسترش زونهاى دگرسانى گَرمابى در

شكل r. نقشه زمينشناسى محلدوها اكتشافى بارملك (شركت مهيندسين زرناب، مقياس ... : :1:)

شمالشرق)، C) تناوب توفُ و كَازه((ديد به سمت شرق)، D) سنگَهاى آندزيت و آندزى بازالت (ديد بها سمت شرق)

بيوتيت اســـت كه به كلريت، مســكوويت و كربنات تجزيه شدهاند. زينوكريستالهاى گرد شده كوارتز كه گاهى داراى
 آن ها ديده مىشـــود و ز ز ويزگگىهاى بارز اين دايكـها استا است. در برخى از نمونهها، كوارتز بصورت بلورهاى نيمه شكلىدار تا شكل دار با حاشيه واكنشى مشاهده مىشود. از مشخصات بارز اين دايكـها وجود بلورهاى شــكلـلار بيوتيت و آپاتيت در اين ســـنـعها اســـت و زيركن نيز گاهى به همراه آپاتيت مشـــاهده مىشود. بافت اين دايكـها از يورفيريكى با خميره دايكىها شـــامل فنوكريستال هاى نيمه شكل دار تا شكلىدار ريز ريلور تا درشتبلور در نوسان است.

از كوارتز و فلدســـار آلكالن قرار دارند. كانىهاى فرومنيزين اين توده شـــامل بلورهاى نيمهشكلدار تا بـشكل آمفيبول و بيوتيت اســت و كانى هاى متفرقه شامل آپاتيت و زيركن مى باشـــند. بافت اين توده از يورفيريك با خميره ريز ايزبلور تا تا
 كانى هاى اصلى تشكيل_دهنده دايكـهاى كوارتزديوريتى نســـل اول شامل بلورهاى نيمـه شـــكلدار پلازيوكلاز كه در خميره ريز تا درشــتـبلورى ز كوارتـــز و وپازيوكلاز و مقادير جزئى فلدســــار آلكالن قــــرار دارند. كانـــى فرومـنيزين اين

كانىهـــاى اصلـــى تشــكـيلدهنده آندزيتها شـــامل فنوكريســـتالهاى نيمه شـــكلدار پالازيــوكلاز و مقاديرى آمفيبول نيمه شـــكلدار مى باشد كه در خميره شيشهاى و ميكروليتـى قرار دارند. بافت اين ســـنگگا هيالوميكروليتى پورفيريك است (شكل D-F) و كانى عارضهاى در آن ها اغلب آپاتيت مىباشد. در برخیى از نمونهها پالزيوكلازها به مجموعه سريسيت، كلسيت و كانى رسى تجزيه شدهاند. كانىهاى اصلى تشــــيلدهنـده آندزيتهــــاى بازالتى شـــامل ميكروكريســتال هاى پلازيوكلاز و كلينوپيروكسن اســت و مقاديرى آمفيبول نيز در آن ها ديده مىيشود. كانـي
 آمفيبول اغلب به كلريت نوع پنين تجزيه شدهاند و تجمعاتى از كلريت در خميره اين ســـنگها ديده مىشود. بافت اين سنگَها ميكروليتتيكى است. توفهاى مشاهده شده در مغزههاى حفارى شده به دو دسته كريستال توف و ليتيكتوف تقسيهم مىشوند. كريستال

 ور كربنات تجزيه شدهاند (شكل D, D, C). بخشى از دكَرسانى

نشان مىدهند (شكل E-9).

كانیسازى

بــا توجه به عمق فرســـايش بالا بادر ايـــن منطقه و ورار

 دارد. كانىســازى مس در توده بارملك يورفيرى بهاصورت
 زونهاى فروشســت هماتيت، ليمونيت و جاروســيـيت در در دري نمونهها مشاهده مى شود. كانىهاى ساى سولفيدى مس در اين
 شــامل كالكو

 آندزيتى تشكيل شدماند و توسط ركدهاى كربان يناته قطع شده

 كانىسازى سرب و روى مى باشند.

دگرسانى

 گَمانههاى اكتشافى در منطقه بارملك نشان مى دمهد كـه توده

 متوسط تا شديد مى باشد كه توسط دكَرسانى هاى يرو يوبيليتيك ضعيفتامتوسطورآرزيليكىعيفتامتوسط همراهیى مىشود

 دلايل عدم غنىشـــدگى زون سوپرثن همين مسئله باشد. با عنايت به اينكه زون ســوپرثن در اثر ســـطح فرسايش و
 اين خصوص منطقى به نظر نمىرســـد. پپيريت در برخى از نمونهها توسط گوتيت جانشين شده است. همچحنين پیريت توســـط كالكوپيريت و اسفالريت جانشين شده است (است شكل (C-V

روى شــامل گالن و اســـفالريت در اين منطقه بهوفور ديده

 سطوح درزه در تمامى سنگگ هاى اين منطقه مشاهده شده است. از كانىهاى اكسيدى مىیتوان به مگَنتيت و هماتيت

مارتيت تجزيه شده است (شكل B-V) ا

 كالكوبيريت و اسفالريت در توفها. حروف اختصارى(Ccp:Chalcopyrite, Py:Pyrite, Sp:Sphalerite)

كالكوپيريت و اسفالريت قابل مشاهده است و پارازثز شامل اشاره شد كانىسازى علاوه بر توده نفوذى كوارتزمونزونيتى يِيريت، كالكوپيريت، گالن و اسفالريت است (شكل D-V).
 شده است. در اين نمونها اكسولوشن كالكوپيريت و 'سفالريت حضور دارد و در همرشدى پییريت و كالكوپيريت نيز در آنها

جدول ا. پارامترهاى آمارى عيار مس مغزههاى حفارى

BHNo	Depth	Total sample	CuAve\％	CuMax\％	$\mathrm{Cu}<0.15 \%$		$\mathrm{Cu}>0.15 \%$	
					Ave	Num of sam	Ave	Num of sam
BAM＿01		19%	\cdots \％$\%$	－ 14	$\because \cdot .14$	1b ${ }^{\text {F }}$	\wedge	－M
BAM＿02	M19／r．	dr	$\because 1$	\cdots	$\cdots \wedge$	AT	1	－ N
BAM＿03	Mas．．	r	$\% 19$	－ 19	$\cdot / \cdot 11$	rr	1	－A9
BAM＿04	rark．	ra		$\cdots \wedge$	$\because \cdot 14$	ra	－	－
BAM＿05	$\cdots \cdots$ ．	ry	$\%$ \％$\%$ H	／$/$／ 1	$\because 19$	rs	r	－MA
TOTAL	1940 \％	MF．	$\%$ \％	／（A）	$\because \cdot 14$	HMA	Ir	－M

 اسفالريت جانشين شده و جدايش كالكوييريت و اسفالريت

با توجه به اينكه در منطقه اكتشافى سونگُون دايكـهاى مىى⿰冫⿰亻⿱丶⿻工二.

كوارتزديوريتى نســـل اول بعد كانىســـازی و حتى بعد ز

 ابی ترمالى نســـبت داد كه حتى نوانسته است دايكههاى بعد كانىســــازى را نيز تحت تأثير قـــرار دهد．در مجموع ز زون، دكرسانى و عيار گَمانهها در شكل 9 آمده است． بررسىهاى صحرائى و لاگینتگ گمانههاى حفارى شـى شده

بررسى عيار و گسترش كانىســــازى مس در توده بارملكى

منـابع

-

 سازمان زمينشناسى و اكتشافات معدنى كشور.
 ماگماتيسسم پليوكواترنرى در محدوده معدن مس سونگَون.

دانشگاه اصفهان، FHA-YFV. -
 زئوشيميائى عناصر كمياب و نادر خاكى در در آنها در در منطقه كيقال (شمال ورزقان، آذربايجانشرقى). مـجله بلورشنـاسى و كانىشناسى ايران، 19، 19 كا

 اســتوكى كوارتزمونزونيت يورفيرى كيقال (شمال ورزقان، انـ،
 . 4V-G.
-
زمين شناسى محدوده بارملك، IDY .
 گزارش زمينشناسى محدوده بارملك، 189.

- Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008. Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arka, central province of Iran. Mineralogy and Petrology, 94, 1, 107-122.
- Chen, J.L., Xu, J.F., Wang, B.D., Yang, Z.Y., Ren, J.B., Yu, H.X., Liu, II. and Feng, Y., 2015. Geochemical differences between subduction and collision-related copper bearing porphyries and implications for metallogenesis. Ore Geology Reviews, 70,1, 424-437.
- Guilbert, J.M. and Park, C.F., Jr., 1986. The Geology of Ore Deposits. Freeman and Company, New York, 985.
- Hassanpour, Sh., Alirezaei, S., Selby, D. and Sergeev, S., 2015. SHRIMP zircon U Pb and

در منطقه بارملك نثـــان مىدههد كه دگرســـانى غالب در توده كوارتزمونزونيت پورفيرى فيليكى همراه با پروپيليتيك

 ضعيف مىياشد. نتيجحهكيرى

نتايج حاصل از بررســـىهاى زمينشناســـى سطحى و اطلاعات گمانههاى اكتشافى در منطقه بارملك را مىىتوان بهصورت زير جمعبندى كرد:
عمق زونهاى سولفوره در منطقه آنومال بارملى . 4 تا
 تنوعهاى ليتولوزيكى در اين منطقه به ترتيب رخداد سـتـي شامل سنگیهاى ولكانيك و ولكانو-كلاستيك ائوسن، توهن كوارتزمونزونيت پورفيرى و دايكـهاى كوارتزديوريتى نســــلـ اول و دوماست. دگرسانىهاى غالب در توده كوارتزمونزونيونيت يورفيرى كه در واقع ادامه توده كيقال پورفيرى به ســـمت جنوبغرب است شامل دگرسانىهاى فيليكى، پروپليتيكى و وري آرريليك بوده و به علت حاشيهاى بودن، دگرسانى پتاسيكى در اين منطقه ديده نمىشــــود. ميـــزان پانيريت اين توده كمم اســـت و شــايد يكى از دلايل عدم تشـــكيل زون غنىشده سوپرزذ همين مســئله باشد. كانىسازى مشاهده شده در

 مى باشد و گسترش كانىسازى سرب و روى در اين منطقه
 توده پورفيرى 'ست. كانىسازى سرب و روى علاوه بر توده

 و روى در دايكىهاى كوارتزديوريتى نسل اول بعد كانيسازي
 فاز اپیترمالى توده پورفيرى انجام شده است.
biotite and hornblende $\mathrm{Ar}-\mathrm{Ar}$ geochronology of Sungun, Haftcheshmeh, Kighal and Niaz porphyry Cu-Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran. International Journal of Earth Sciences, 104, 1 , 45-59.

- Moayyed, M., 2004. Reporting of geological studies and drilling cores of logging in Barmolk limit. Pars olang Engineering and Consulting Co, Tehran, 170.
- Richards, J.P., 2005. Cumulative factors in the generation of giant calc alkaline porphyry Cu deposits, in Porter, T.M., (ed.), Super porphyry copper and gold deposits. A Global Perspective, PGC Publishing, Adelide, 1, 7-25.
- Richards, J.P., Boyce, A.J. and Pringle, M.S., 2001. Geological evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96, 271-305.
- Shahabpour, J., 1999. The role of deep structures in the distribution of some major ore deposits in Iran, NE of Zagros thrust zone. Journal of Geodynamics, 28, 237-250.
- Sillitoe, R.I., 1989. Gold deposits in western Pasific island arcs: the magmatic connection, in: Keays, R.R., Ramsay, W.R.H., and Groves, D.I. (eds.) The geology of gold deposits: the perspective in 1988. Economic Geology Monograph,

6, 274-291.

- Sillitoe, R.II., 1993. Gold-rich porphyry copper deposits: Geological model and exploration implications. Geological Association of Canada Special Paper, 40, 465478.
- Sillitoe, R.H., 1994. Erosion and collapse of volcanoes: Causes of telescoping in intrusion centered ore deposits. Geology, 22, 945-948.
- Sillitoe, R.H., 1998. Major regional factors favoring large size, high hypogene grade elevated gold content and supergene oxidation and enrichment of porphyry copper deposits, in: Porter, T.M., (ed.), Porphyry and Hydrothermal copper and gold deposits. A Global Perspective: PGC Publishing, Adelide, 21-34.
- Sillitoe, R.H., 2000. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. SEG Reviews, 13, 315-345.
- Titley, S.R. and Hicks, C.L., 1966. Geology of the porphyry copper deposits, Southwestern North America. Tuoson: Univ, Ariz Press, 287.
- Waterman, G.C. and Hamilton, R.L., 1975. The Sar Cheshmeh porphyry copper deposit. Economic Geology, 70, 568576.
- Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh Zerreshk and Ali-Abad porphyry copper deposites, central Iran. International Geology Review, 47,6, 620-646.

