پترولوئی و زئوئیمی سنگ‌های آذرین موجود در سازنگ قرمز زیرین، منطقه گرسنگ

حیب‌الله قاسمی (ر) و محمد برهمند

1. دانشگاه گیوره زمین‌شناسی، دانشگاه علوم زمین، دانشگاه صنعتی شهید رجایی
2. کارشناس ارشد پترولوئی، گیوره زمین‌شناسی دانشگاه علوم زمین، دانشگاه صنعتی شهید رجایی

تاریخ دریافت: ۱۳۹۰/۰۷/۲۶
تاریخ پذیرش: ۱۳۹۰/۰۷/۲۶

چکیده
در داخل سازنگ قرمز زیرین در منطقه گرسنگ، توجه به ترتیبات نیم‌معدود برخورداری دریافته‌ای در این منطقه گردد. این توجه به ترتیبات نیم‌معدود در منطقه گرسنگ، نشان‌دهنده است که این منطقه به‌عنوان یکی از مناطق مورد بررسی در سازنگ قرمز زیرین در منطقه گرسنگ است. این اشاره به شناخت و بررسی مناطق مورد بررسی در سازنگ قرمز زیری در منطقه گرسنگ است. این اشاره به شناخت و بررسی مناطق مورد بررسی در سازنگ قرمز زیری در منطقه گرسنگ است. این اشاره به شناخت و بررسی مناطق مورد بررسی در سازنگ قرمز زیری در منطقه گرسنگ است.

واژه‌های کلیدی: پترولوئی، زئوئیمی، حوضه کشنده، پشت کمان اولیه، سازنگ قرمز زیرین، گرسنگ.
زمین‌شناسی و سنجش شناسی

مجموعه‌های آذرین نیمه‌عمیق این منطقه شامل توده‌های متعدد کربنیک و دوربینی مسن‌تر به‌صورت سیل، داک و استوک‌های کربنیکی (شکل‌های ۱ و ۳-الف و ب)، به‌دست اولین میانی - ژیپسی (Olmg) سازند قرمز زیرین در عمک کم تفوّض کردند و به‌دست ماهیت خشک، عمک کم تزویری، حجم کربنیک توده‌ها و سردره سریع آنها، می‌تواند شیپیکی در سنجش‌های میانی - ژیپس سوپری و باین این نوع توده‌ها را می‌توان به‌گونه‌ی مباین - پیسن نسبت داد (برهمند، ۱۳۸۹). در تحقیقات پیشین، این

شکل ۱. موقعیت منطقه گریز مس که در جنوب از نزدیکی منطقه ژیپسی ایران (برهمند، ۱۳۸۹).

(۱۳۸۲) جاییگاه زمین‌ساختی حوضه گریز مس که در جنوب از نزدیکی منطقه ژیپسی ایران (برهمند، ۱۳۸۹) و (۱۳۸۲) جاییگاه زمین‌ساختی حوضه گریز مس که در جنوب از نزدیکی منطقه ژیپسی ایران (برهمند، ۱۳۸۹).
ک-zA شیارهای آبخیزداری شده در جهت های مختلفی می‌باشد. هم‌اکنون شیارهای آبخیزداری شده به‌طور کلی در جهت ۸۰° در جنوب شرقی و ۲۰° در جنوب غربی (۱۰۰°) مشاهده می‌شوند. شیارهای مختلف آبخیزداری شده در زمین‌های شمال غربی و غربی ترکیه و بخش‌هایی از سیتیال سیلزیوم، مرکزی ناحیه و سیتیال سیلزیوم، مرکزی ناحیه مشاهده می‌شوند. شیارهای مختلف آبخیزداری شده در زمین‌های شمال غربی و غربی و سیتیال سیلزیوم، مرکزی ناحیه مشاهده می‌شوند.

در جهت های مختلفی شیارهای آبخیزداری شده مشاهده می‌شوند، اما به‌طور کلی در جهت ۸۰° در جنوب شرقی و ۲۰° در جنوب غربی (۱۰۰°) مشاهده می‌شوند. در زمین‌های شمال غربی و غربی ترکیه و بخش‌هایی از سیتیال سیلزیوم، مرکزی ناحیه مشاهده می‌شوند. در زمین‌های شمال غربی و غربی و سیتیال سیلزیوم، مرکزی ناحیه مشاهده می‌شوند.
زمین‌شناسی
در این پژوهش به‌منظور بررسی ویژگی‌های زئوشیمیایی سنگ‌های مورد مطالعه، تعداد 7 نمونه از این سنگ‌ها در کانادا، به‌روش پیشنهاد شده در ALS Chemex آزمایش‌گیری شدند. بیش از 10 عناصر اصلی و ICP-AES متشکل از مجموعه CCP-PKG01 فازات پایه و روش ICP-MS برای عناصر نادر هاکی و ناسازگار آنالیز شدند (جدول 1).

سنگ‌های آذین تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه نمونه از این سنگ‌ها در مرحله اول تجزیه کریدوریت (Cox et al., 1979) و در مرحله دوم ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز ناکام‌گری کلیوپروکسنس سنگ‌های NPs-1 و NPs-2 بیش از تعداد عناصر تعریف کننده فازهای ناکام‌گری سنگ‌های ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز NPs-1 و NPs-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984).

سنگ‌های اغلب تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه نمونه از این سنگ‌ها در مرحله اول تجزیه کریدوریت (Cox et al., 1979) و در مرحله دوم ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز NPs-1 و NPs-2 بیش از تعداد عناصر تعریف کننده فازهای ناکام‌گری سنگ‌های NPs-1 و NPs-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984).

سنگ‌های اغلب تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه نمونه از این سنگ‌ها در مرحله اول تجزیه کریدوریت (Cox et al., 1979) و در مرحله دوم ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز NPs-1 و NPs-2 بیش از تعداد عناصر تعریف کننده فازهای ناکام‌گری سنگ‌های NPs-1 و NPs-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984).

سنگ‌های اغلب تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه نمونه از این سنگ‌ها در مرحله اول تجزیه کریدوریت (Cox et al., 1979) و در مرحله دوم ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز NPs-1 و NPs-2 بیش از تعداد عناصر تعریف کننده فازهای NPs-1 و NPs-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984).

سنگ‌های اغلب تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه نمونه از این سنگ‌ها در مرحله اول تجزیه کریدوریت (Cox et al., 1979) و در مرحله دوم ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز NPs-1 و NPs-2 بیش از تعداد عناصر تعریف کننده فازهای NPs-1 و NPs-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984).

سنگ‌های اغلب تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه نمونه از این سنگ‌ها در مرحله اول تجزیه کریدوریت (Cox et al., 1979) و در مرحله دوم ناحیه De la Roche (1980) در قلمرو گابریدوریت فاز NPs-1 و NPs-2 بیش از تعداد عناصر تعریف کننده فازهای NPs-1 و NPs-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984).

سنگ‌های اغلب تحت فشار شکل‌های مختلف (شنو، 1984) مورد بررسی و بیان می‌گردد. سه NPS-1 و NPS-2 بیش از تعداد عناصر تعریف تکیه دارد (شنو، 1984)
<table>
<thead>
<tr>
<th>sample</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.11</td>
<td>48.35</td>
<td>49.48</td>
<td>49.91</td>
<td>50.43</td>
<td>50.56</td>
<td>50.70</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.87</td>
<td>0.84</td>
<td>1.64</td>
<td>1.72</td>
<td>1.66</td>
<td>1.53</td>
<td>1.58</td>
</tr>
<tr>
<td>FeO₇</td>
<td>10.94</td>
<td>11.10</td>
<td>11.31</td>
<td>12.71</td>
<td>11.52</td>
<td>11.57</td>
<td>11.50</td>
</tr>
<tr>
<td>FeO</td>
<td>9.23</td>
<td>9.09</td>
<td>9.58</td>
<td>8.675</td>
<td>8.85</td>
<td>8.79</td>
<td>8.53</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.85</td>
<td>1.82</td>
<td>2.12</td>
<td>2.60</td>
<td>2.65</td>
<td>2.64</td>
<td>2.99</td>
</tr>
<tr>
<td>MnO</td>
<td>0.19</td>
<td>0.21</td>
<td>0.38</td>
<td>0.22</td>
<td>0.33</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>MgO</td>
<td>7.61</td>
<td>8.38</td>
<td>6.04</td>
<td>5.74</td>
<td>5.97</td>
<td>5.70</td>
<td>5.92</td>
</tr>
<tr>
<td>CaO</td>
<td>11.30</td>
<td>9.34</td>
<td>7.27</td>
<td>7.95</td>
<td>6.14</td>
<td>5.50</td>
<td>6.65</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.41</td>
<td>1.90</td>
<td>1.42</td>
<td>3.17</td>
<td>1.25</td>
<td>1.77</td>
<td>1.83</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.26</td>
<td>2.73</td>
<td>4.85</td>
<td>1.12</td>
<td>5.09</td>
<td>5.85</td>
<td>4.24</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.19</td>
<td>0.17</td>
<td>0.95</td>
<td>1.00</td>
<td>0.91</td>
<td>0.96</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Trace elements (ppm)

<table>
<thead>
<tr>
<th>Ba</th>
<th>123.5</th>
<th>160.5</th>
<th>723</th>
<th>449</th>
<th>528</th>
<th>817</th>
<th>887</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs</td>
<td>0.44</td>
<td>0.49</td>
<td>0.12</td>
<td>0.28</td>
<td>0.17</td>
<td>0.35</td>
<td>0.28</td>
</tr>
<tr>
<td>Ga</td>
<td>14.2</td>
<td>14.1</td>
<td>16.1</td>
<td>16.5</td>
<td>16.5</td>
<td>17.1</td>
<td>15.7</td>
</tr>
<tr>
<td>Hf</td>
<td>1.3</td>
<td>1.3</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
<td>4.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Nb</td>
<td>2.5</td>
<td>2.7</td>
<td>22.6</td>
<td>22.8</td>
<td>24.3</td>
<td>24</td>
<td>24.5</td>
</tr>
<tr>
<td>Rb</td>
<td>23.2</td>
<td>39.3</td>
<td>37.3</td>
<td>9.3</td>
<td>33.5</td>
<td>51.7</td>
<td>24.3</td>
</tr>
<tr>
<td>Sr</td>
<td>555</td>
<td>728</td>
<td>974</td>
<td>701</td>
<td>1085</td>
<td>2100</td>
<td>1250</td>
</tr>
<tr>
<td>Ta</td>
<td>0.20</td>
<td>0.20</td>
<td>1.10</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Th</td>
<td>1.5</td>
<td>1.46</td>
<td>1.5</td>
<td>1.6</td>
<td>1.78</td>
<td>1.77</td>
<td>1.74</td>
</tr>
<tr>
<td>U</td>
<td>0.51</td>
<td>0.44</td>
<td>0.48</td>
<td>0.57</td>
<td>0.59</td>
<td>0.61</td>
<td>0.56</td>
</tr>
<tr>
<td>V</td>
<td>259</td>
<td>253</td>
<td>182</td>
<td>189</td>
<td>173</td>
<td>171</td>
<td>166</td>
</tr>
<tr>
<td>Zr</td>
<td>44</td>
<td>44</td>
<td>165</td>
<td>166</td>
<td>176</td>
<td>193</td>
<td>179</td>
</tr>
<tr>
<td>Y</td>
<td>26.6</td>
<td>28.2</td>
<td>26.4</td>
<td>25.7</td>
<td>24.8</td>
<td>14.3</td>
<td>14.8</td>
</tr>
<tr>
<td>Co</td>
<td>36.9</td>
<td>38.2</td>
<td>22.1</td>
<td>26.2</td>
<td>25.2</td>
<td>26.4</td>
<td>25.2</td>
</tr>
<tr>
<td>Cr</td>
<td>130</td>
<td>140</td>
<td>70</td>
<td>100</td>
<td>80</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Ni</td>
<td>42</td>
<td>42</td>
<td>28</td>
<td>37</td>
<td>31</td>
<td>28</td>
<td>31</td>
</tr>
</tbody>
</table>

Rare earth elements (ppm)

<table>
<thead>
<tr>
<th>La</th>
<th>8.6</th>
<th>8.9</th>
<th>37.6</th>
<th>39.3</th>
<th>39.1</th>
<th>42.2</th>
<th>39.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>19</td>
<td>19.6</td>
<td>81.8</td>
<td>82</td>
<td>83</td>
<td>86.9</td>
<td>85.8</td>
</tr>
<tr>
<td>Pr</td>
<td>2.83</td>
<td>2.74</td>
<td>10.55</td>
<td>10.45</td>
<td>10.8</td>
<td>11.05</td>
<td>11.2</td>
</tr>
<tr>
<td>Nd</td>
<td>12.1</td>
<td>12.1</td>
<td>40.4</td>
<td>41.3</td>
<td>42</td>
<td>42.7</td>
<td>42.8</td>
</tr>
<tr>
<td>Sm</td>
<td>3.08</td>
<td>2.92</td>
<td>7.21</td>
<td>7.87</td>
<td>8.08</td>
<td>8.13</td>
<td>8.12</td>
</tr>
<tr>
<td>Eu</td>
<td>0.98</td>
<td>0.97</td>
<td>2.4</td>
<td>2.2</td>
<td>2.35</td>
<td>2.29</td>
<td>2.33</td>
</tr>
<tr>
<td>Gd</td>
<td>3.09</td>
<td>3.01</td>
<td>6.65</td>
<td>7.22</td>
<td>7.48</td>
<td>7.19</td>
<td>7.57</td>
</tr>
<tr>
<td>Tb</td>
<td>0.52</td>
<td>0.51</td>
<td>0.99</td>
<td>1.08</td>
<td>1.1</td>
<td>1.14</td>
<td>1.08</td>
</tr>
<tr>
<td>Dy</td>
<td>2.97</td>
<td>2.82</td>
<td>4.96</td>
<td>5.26</td>
<td>5.53</td>
<td>5.64</td>
<td>5.37</td>
</tr>
<tr>
<td>Ho</td>
<td>0.62</td>
<td>0.61</td>
<td>1.01</td>
<td>1.04</td>
<td>1.06</td>
<td>1.12</td>
<td>1.06</td>
</tr>
<tr>
<td>Er</td>
<td>1.75</td>
<td>1.75</td>
<td>2.85</td>
<td>3.03</td>
<td>3.08</td>
<td>3.26</td>
<td>3.14</td>
</tr>
<tr>
<td>Tm</td>
<td>0.26</td>
<td>0.23</td>
<td>0.38</td>
<td>0.42</td>
<td>0.43</td>
<td>0.46</td>
<td>0.41</td>
</tr>
<tr>
<td>Yb</td>
<td>1.52</td>
<td>1.49</td>
<td>2.39</td>
<td>2.51</td>
<td>2.63</td>
<td>2.9</td>
<td>2.57</td>
</tr>
<tr>
<td>Lu</td>
<td>0.24</td>
<td>0.23</td>
<td>0.4</td>
<td>0.38</td>
<td>0.42</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>Sm/Yb</td>
<td>2.03</td>
<td>1.96</td>
<td>3.02</td>
<td>3.14</td>
<td>3.07</td>
<td>2.80</td>
<td>3.16</td>
</tr>
</tbody>
</table>
پترولئو و ازونشیسی سلگهای آدرین موجود در...
موضع‌ت نمونه‌ها در نمودار چند‌عنصری به‌نگار شده به گوشته اولیه (Sun and McDonough, 1989) نیز ضمن تأیید تمامی ویژگی‌های ذکر شده در نمودار شکل 10، ناهم‌تجایی مثبت از عنصر لیتیوم برگ یون و ناهم‌تجایی منفی Nb را که می‌تواند ناشی از آلبیسیت‌های ماکما باشد، در تمام نمونه‌ها نشان می‌دهد (شکل 11). در خصوص ناهم‌تجایی مثبت Sr در سنگ‌های آلوده‌ترین منطقه می‌توان به دو بحث پلاژیوکلاز موجود در ناحیه منشأ ماکما (مثل Defant and Drummond, 1990) و یا به حضور فراوان پلاژیوکلاز در این سنگ‌ها اشاره (LILs) و عنصر لیتیوم برگ یون LREEs منطقه گرسنگار از عنصر شدگی و آزی و HREEs نهی شدگی نشان می‌دهند و طرح نمودار هردو گروه سنگی نیز به موازات همدیگر است (شکل 10، ب). نمونه‌های تقریبی‌الکتره با نمونه‌های اولیه در مجموع از تمامی عنصر نادر خاکی غنی شده، (ب) در هردو سری سنگی Sr و K، Ba، Rb غنی شدگی از گابرویی از Ta و Nb تهی شدگی شده و از نهایی شدگی ناپذیر درند و لی از (P و Ti) نمونه‌های تقریبی‌الکتره از هیچ‌کدام از عنصر تهی شدگی شاخصی ندارند.