مطالعهكانىشناسى اوليهكربناتهاى سازندقم با استفادهاز مطالعات پتروگَرافى و زئوشيميايى در برش كانسار سلستين مادآباد (جنوب زنجان)

r. Y. دانشيار گروه زمينشناسى، دانشكده علوم، دانـ، دانشكاه زنجان

```
تاريخ دريافت: 9V/9/\\
تاريخ پذيرش: 9
```


Abstract

چجییه سازند قم تنها مخزن گًازى موجود در حوضه رسوبى ايران مركزى محسوب مىش شود. اين سازند در بيشتر مناطق كانىشناسى اوليه كلسيتى براى بخشههاى ســـنگ آهكى سازند قم در منطقه مادآباد مى باشد. نتايج مطالعات زئوشيميايى (Na, Sr, Ca, Mg, Mn, Fe) نيز بيانگً تركيب كانىشناسى اوليه كلسيتى در يك سيستم بسته ديازثزى و انحلال در بالا رفتن كيفيت مخزنى سازند قم در ميدانهانى گَازى ايران مركزى (نظير ميدانهایى سراجه و البرز) است. وارْهاى كليدى: زئوشيمى، كانىشناسى اوليه كلسيتى، سازند قم، مادآباد، زنجان.

علاقه به مطالعه ديرينهشناســـى، چیينهشناسى و تكتونيك
Schuster and Wielandt,) اين سازند فسيلى بيشتر شد 1999). با وجود مطالعات متعدد انجامشــــده جهت تعيين ويزگگىهاى مختلف زمينشـــناختى سازند قم Furrer and Soder, 1955, Okhravi and Amini, 1998, VaziriMoghaddam and Torabi, 2004, Daneshian and

مقدمه
سازند قم با سن اليگوميوسن بهعنوان مهمهترين سازند هيدروكربنى شناخته شده در يهنه ايران مركزى و تنها مخزن گًازى موجود در اين حوضه رســوبى در نظر گرفته مىشود. در ســـال 19MF با كشف ذخاير هيدروكربورى در سازند قم، * *ويسنده مرتبط: afshin.zohdi@znu.ac.ir

نمونهها با حداقل محتواى فســيل) انتخـــاب گرديد. پودر

 و به روشهاى ICP و XRF آناليز گرديد.
زمينشناسى و چـينـهشناسى منطقه مادآباد

 سلطانيه-خدابنده (علوى نائينى، آیVK) و حلب (شهيدى

 براســاس مطالعات صحرايى انجامشده در قالب تمهيه نقشه زمينشناسى مقياس ".م:ا:ا، سازند قم در محدوده كانسار سلستين مادآباد از قديم به جديد شامل مارنهانى ريّيسايسار،
 آهكههاى ضخيملايه تا توداى با با ميانلان الايههاى آهك مانى مارنى
 واحدها شمال تا شمال باختر-جنوب تا جنوبخاور الـا با شا شيب

 مركزى، جنوب و جنوبباخترى منطقن
 تا متوســطلايه كرم رنتى با ميانلايههاى مارنى پوشـــيـيده
 كسترش داشته و فسيلهاى فرامينيفر بنتيك در بخش بره هاى آهكى آن به وفور ديده مىشود. بالاترين بخش توالـ توالى سنگّى
 داراى قطعات فســـيلى فراوان با ميان لايدهاى آهكى مارنى تشكيل شده اســت كه بهصورت همشيب واحـي
 و شـــمالباختر تا باختر منطقه گســـترش داشـر داشته و ميزبان كانهزايی سلستين منطقه مى باشد.

Ramezani Dana, 2007, Reuter et al., 2009, Mohammadi et al., 2011 دقيقى در ارتباط با ويزگى هاى زئوشيميابى و تعيين تركيب
 چرّوهش، بهمنظور شناخت و تعيين شرايط رسوبگذارى و تركيب كانىشناسى اوليه، يك برش چیينهشناسى مناس از اين ســازند در محدوده كانسار سلستين مادآباد انتخاب و مورد مطالعه دقيق صحرايى، پتروكرافى و زئوشــــيميميايى

 محققين حوضه رســوب و نفت قرار گيرده. كانسار سلستين
 كيلومترى باختـــر قيدار با موقعيت جغرافيايى "
 از طريق جاده زنجان-قيدار و قيدار-كرسف-روستاى مادآباد قابل دسترسى مىىاشد.

روش مطالعه

 برش چينهشناسى مناسب از نهشتهنهاى اليگَوسن تا ميوسن

 - 9 نمونه از كربناتهاى سازنـا
 رنَآميزى توسط محلول آليزارين قرمز (Dickson, 1966)

 فلوگل (Flügel, 2010) استفاده شده است. سيسى، جهيّ بررسىهاى رخســـارهاى و ؤئوشيميايى سازند قم در در منطقه مورد مطالعه، •ץ نمونه كربناتى (دربركيرنده بخش ميكرايتى

از آهــــى مارنـــى و حاوى خُردههاى فســــيلى جلبكـ قرمز، T/Q متر آهك مارنى نازكلايه خاكسترى رنگ فاقد فسيل، - ـ متر سنگ آهكهاى ضخيهملايه و تودهاى خاكسترى رنگ

با مـيانلايههايى از آهكى مارنى و داراى خُردههاى فســـيلى
خاريوســـت، Y/Q متر آهك مارنى نازكلايه خاكسترى رنگ
فاقد فســـيل و سرانجام •V متر سنگ آهكـهاى ضخيمملايه
تا تودهاى خاكسترى رنگ با ميان لايههايى از آهك مارنى و
داراى خُردههاى فسيللى نظير فرامينيفرهاى بنتيك تشكيل
شده است.

بخش كربناته سازند قم در منطقه مادآباد حدود •19 متر
ستبرا دارد. ستون چينهشناسى اين سازند در برش كانسار مادآباد در شــكل ب نشـــان داده شده اســت. مطابق اين شكل، از ديدگاه سنگشناسى اين سازند از V بخش شامل:
 با ميان لايههاى مارنى و داراى فرامينيفرهاى بنتيك بزرگ

 آهكى ضخيمملايه خاكســترى روشن تا تيره با ميان لايههايى

OM^{1} : Grey, thick-bedded to massive, fossiliferous limestone with interlayers of thin-bedded marly limestone
$\mathrm{OM}^{1, \mathrm{~m}:}$: Cream, thin- to medium-bedded, benthic foraminifera-bearing limestone interbedded with thin-bedded grey marl
$\mathrm{OM}^{\mathrm{m}}:$ Red-brown, gypsiferous marl
شكل 「. نماهايى از واحدهاى سنگى سازند قم در برش كانسار سلستين مادآباد (ديد هر دو تصوير به سمت شمال باخاختر). الف) نمايى كلى از از

پتروگرافى، پنج ريزرخساره اصلى در واحدهاى سنگ آهكى

 شــامل ريزرخســاره پكســـتون حاوى مرجــان و و جلبكـ، ريزرخســاره پكستون تا وكستون حاوى بايوكلست و جلبكـ قرمز، ريزرخـــــاره پكستون تا وكســـتون حاوى فرامينيفر
 جلبك قرمز و در نهايت ريزرخساره وكستون حاوى بايون

 آهكههاى ضخيملايه و خاكسترى رنتَ ديده شده و متعلق

 خُردهماى درشــت مرجان و جلبك قرمز با فراوانى بهترتيب

پتروگرافی، ريزرخسارهها و محیيط رسوبى سازند قم در منطقه مادآباد

 و فرامينيفرهـــاى پِانكتون تشــكيل شــــدهاند. اين ذرات
 (وكســتـون) و گَاهى دانه چشتيبان (پكستون) قرار گرفتنهاند

 بر كانىشناسى اوليه كلسيتى براى سنگَهاهاى آهكى سازند قم در منطقه مورد مطالعه باشـي

شكل . ستون چینهشناسى سازند قم در برش كانسار مادآباد

چنين رخسارهاى توسط حســينىنزاد و همكاران (9ه٪!) براى نهشـــته كربناته ســـازند قم در زمان ميوسن واقع در جنوبباختر سمنان معرفى و شناسايى شده است. ريزرخساره پكستون تا وكستون حاوى فرامينيفر بنتيک منفذدار در صحرا بيشـــتر بهصورت سنگگ آهكهاى نازکى تا متوسط لايه كرم رنگَ و سنگ آهكى رسى نازكى لايه خاكسترى

 قطعات فسيلى درشــت نظير فرامينيفرهاى بنتيكـ با ديواره هيالين (از جمله يولپيدينا) مىباشـــد. ريزرخساره وكستون حاوى خاريوســت و جلبكى قرمز در صحـــرا عمدتا در داخل
\1 و ديـــواره هيالين، قطعات نرمتنان، خُردههاى خاريوســـت و دوكفهاى نيـــز در مجموع با فراوانى 18 درصد حضور دارند. ريزرخسارْی پکستون تا وكستون حاوى بايوكلست و جلبک قرمز در كل توالى ســـازند قم در منطقه مورد مطالعه قابل شناسايى مىباشد، در مشاهدات صحرايى عمدتاً در داخل سنگَ آهكهاى متوسط تا ضخيملايه با ميان لايههاى آهى مارنى تشكيل شده اســـت. ذرات اصلى تشكيلدهنـنده اين
 K. بافت گل پشــتـيبان تا دانه پشــــتيبان قرار گرفتهاند. نظير

شــكل \&. تصاوير ميكروســكويى (نور عبورى پاريزه متقاطع، XPL) از ريزرخسارههاى شناسايیشده در ســازند قم در برش كانسار مادآباد.

巴 ج ح ح) وكستون حاوى بايوكلست جلبك قرمز و فرامينيفر پالانكتون (نمونههاى

تشكيلدهنده اين ريزرخساره را جلبك قرمز با فراوانى •ا درصد
 اجتماع دانههاى كربناتى سازند قم در برش كانسار مادآباد عمدتاً از فرامينيفرهاى بنتيكى بزرگَ با ديواره هيالين و ور روشن تشكيل شده و همراهى آنها با جلبكـهاى قرئى قرمز كوراليناسهآ
 قابل ملاحظه فرامينيفرهاى بنتيك با بير ديواره هيالين و روشن همراه با فرامينيفرهاى پالكتون در ريزرخسارههایى شناسایی

ســـنگَ آهكـهاى ضخيمهلايه به رنگَ خاكسترى تا خاكسترى متمايل به كرم واقع در بخشهاى زيرين توالى مورد مطالعه از سازند قم قرار گرفته است. ذرات اسكلتى اصلى اين ريزرخساره

 حاوى بايوكلست جلبكى قرمز و فرامينيفر پلانكتون، ضخيرّ رينم
 ســـازند قم در منطقه مورد مطالعه قرار دارد. دانههاى اصلى ونى

كرد كه تنوع بالاى آلوكمهاى اســـكلتى در ريزرخسارههاى
 مناسب آب در محيط رسوبگَارى اين ريزرخساره مىیباشد

 در برش مورد مطالعه، در بخشهاى انتهايى شلف داخلى تا شلف ميانى رسوبگذارى كردهاند.

مطالعات زئوشـيميايى

نتايج آناليزهاى شيميايى عناصر اصلى و فرعى•ץ نمونه از سنگً آهكـهاى سازند قم در برش كانسار مادآباد در جدول ارائه شده اســت. براســـاس اين جدول، مقدار استرانسيم

 متغير اســتـ. در نمونههاى آهكى سازند قم در منطقه مورد

بحث و بررسى

جهت تعيين تركيب كانىشناسى اوليه سنگ آهكـهاى ســازند قم در منطقه مادآباد و مقايســـه آن با كربناتهای آى آراگونيتى و كلسيتى عهدحاضر و ديرينهاز نمودارهاى مختلفى
 مىتـــوان كربناتهاى حـــارْاى ديرينه و عمهــد حاضر را از
 al., 1996; Adabi and Asadi Mehmandosti, 2008;
Adabi et al., 2010; Khatibi Mehr and Adabi, 2014). ســنـت آهكـهاى آراگونيتى حـــارْاى عهد حاضر داراى مقادير منگَنز پايين و نســـبت Sr/Na بالا مىباشــــند (Milliman, 1974). در حالـىكــه در ســـنگ آهكـهـــاى كلســيتى عهد حاضر و آهكـهاى كلســـيتى ديرينه، مقدار منگَنز بالا و نســـبت Sr/Na پايين (كمتر از ا) است (آدابى،

 ترسيم مقادير Mn در مقابل نسبت Sr/Na نشان میديدهد كه نسبت Sr/Na در نمونههاى سنگ آهكى سازند قم در منطقه

شده و نبود ريزرخسارههاى متعلق به محيطهاى ساحلى و

 فابريك فنســـترال، اســتـروماتوليت، پيزوئيد و ذارت آوارى كوارتز كه بيانگر محيطهاى جزر و مدى هســـتند، شناسايى و معرفى نشده اســت كه خود گواهى بر يكى محيط دريايى باز در حين رسوبگذارى سازند قم مىباشد. لازم به توضيح اســت كه ريزرخسارههاى ســـازند قم در بخشههاى باخترى محدوده مورد مطالعــهـ در اين پ夫وهشى، واقع در بخششهاى جنوبباختر زنجان (روستاهاى قمچقاى و دهشير)، حاكى از ريفى بودن ســـازند كربناته قم مىباشــــــند. در در اين مناطق كه در فاصله حـــدود •r كيلومترى منطقه مورد مطالعه در ايـــن تحقيق قـــرار دارد، حضور ريفهاى پيوســـته و واقعى قابـــل تعقيب در صحرا با ضخامت زياد و همچحنين تغييرات سريع ريزرخسارهها و سنگششناسى، دليل محكمى بر وجود ريفهاى پيوسته (ســدهاى ريفى) براى كربناتهاى سازند

 رسوبى ســـازند قم در منطقه مورد مطالعه در اين تحقيق را

 مربوط به بخشهاى جلوى ريف و به سمت درياى باز در نظر گرفت. حضور غالب ميكرايت و مقادير كم ســيمان در اكثر ريزرخسارهها نيز بيانگر يك محيط رسوبى كم انرزى و در زير
 كربناتهاى سازند قم در منطقه مادآباد مى دباشد. در منطقـــه مورد مطالعه با توجه بله نوع بافت رســـوبى

 داخلى، ريزرخسارههاى دربرگيرنده جلبك قرمز، فرامينيفر بنتيك با ديواره هيالين و قطعات خاريوســـت در بخشـهاهـاى ابتدايى شلف ميانى و ريزرخساره وكستون حاوى بايوكلست
 ميانى برجاى گذاشـــته شـــدهاند. بهطور كلى مىتوان بيان

جدول ا. نتايج تجزيههاى شــيميايی عناصر اصلى و فرعى براى ســـنـگ آهكـهاى سازند قم در برش كانسار مادآباد. مقادير منيزيم و كلسيم بر حسب درصد وزنى و ساير عناصر بر حسب پیییى بـى مى باشد

Sample No.	M40	M41	M42	M43	M44	M45	M47	M48	M50	M51
Mg	0.30	0.20	0.25	0.40	0.27	0.28	0.35	0.30	0.18	0.20
Ca	38.52	39.02	39.09	38.33	39.26	39.33	38.32	39.61	39.50	39.38
Sr	416	394	430	599	310	346	425	197	264	112
Na	371	$371<$	$371<$	$371<$	$371<$	$371<$	$371<$	$371<$	$371<$	$371<$
Fe	1136	718	1385	1061	593	557	951	492	891	664
Mn	36	67	31	26	37	41	40	75	26	102
	M 52	M 53	M 54	M 55	M 56	M 57	M 58	M 60	M 62	M 43
Mg	0.20	0.25	0.29	0.30	0.25	0.18	0.15	0.59	0.52	0.70
Ca	39.23	39.2	39.35	39.41	39.09	39.95	40.01	37.64	37.33	36.43
Sr	297	296	349	420	257	272	241	230	379	247
Na	-	$371<$	371	445	371	519	371	445	371	519
Fe	476	538	675	379	682	148	234	1954	1600	3653
Mn	51	22	41	43	71	26	27	53	36	42

 عكا Na

 ارائه شده است

كه بيشتر نمونههاى سنگَ آهكى سازند قم در منطقه مورد مطالعه، در داخل محدوده كلسيتى سرد نيمهقطبى پرمين تاســمانيا، در اســتراليا (Rao, 1991) واقع شده و داراى ديـى
تركيب كانىشناسى اوليه كلسيتى بودهاند.

مقايســـه تغييرات Sr و Na در مقابل Mn در سنگڭهاى
آهكى ســـازند قــم در منطقـــه مادآبـــاد بـــا محدودههاى سنگگ Adabi) ساى آهكى آراگونيتى و كلسيتى سازند مزدوران (and Rao, 1991 و نمونههـــاى كل كربناته مناطق معتدله عهـــد حاضر (Rao and Adabi, 1992) نشــــان مىدهد كه ميزان استرانسيم در ســـنگ آهكـهاى منطقه مورد مطالعه پايينتر از مقادير معادل هاى عهه حاضر آنها بوده و در محدوده كلسيتى كربناتهاى مزدوران قرار گرفته است (شكل 9). اين
 سنگگهاى آهكى سازند قم در منطقه مادآباد مىباشند.

مادآباد كمتر از يك است بهطوريكه اغلب نمونهها در داخل
 معتدله تاسمانيا قرار مىگيرند (شكل ه-الف). براساس اين نمودار، سنگ־هاى آهكى سازند قم در منطقه مادآباد احتمالاً داراى تركيب كانىشناسى اوليه كلسيتى هستند. بهطور معمول از مقادير استرانسيهم براى بررسى شرايط ديازنزى، محيط ديرينه و تعيين تركيب كانىشناســى اوليه رسوبات كربناته استفاده مىشود (, Veizer and Demovic .(1973; Heydari et al., 2008; Adabi et al., 2010 نتايج بهدست آمده از تجزيههاى شيميايى سنگ آهكهاى
 استرانسيهم و سديم در اين نمونهها بهترتيب بين IIT التا
 روى نمودار Sr در مقابل Na (شــكل Q-ب) نشان مىدهد

 و كلسيتى مزدوران (Adabi and Rao, 1991) نيز ارائه شده است

است. همانگونه كه در اين شكل ديده مىشود، نمونههاى
 داخل محدوده كربناتهاى شـــلف آبهاى سرد عمهد حاضر تاسمانيا قرار گرفته است و داراى تركيب كانى كلسيتى مى باشند كه با نتايج حاصل از مطالعات پتروگرافیى مطابقت دارد.

بهمنظور تأييد كانىشناسى اوليه كلسيتى براى نمونههاى كربناتى سازند قم در منطقه مورد مطالعه، از نمودارهاى ارارائه

 حاضر نوع باهاما با تركيب كانىشناسى آراگونيتى و كلسيت چُر مينزيم و كربناتهاى شــــلف آبهاى ســـرد عهـد حاضر تاسمانيا با تركيب كانىشناسى كلسيتى نيز نشان داده شده

 نزديكى و داخل محدوده كربناتهاى شلف آبهاى سرد عهد حاضر تاسمانيا قرار كرفته كه داراى تركيب كانىشناسى اوليه كلسيتى مىباشند، قرار رَرفته است

Brand and) (LMC) و كلســيت كم منيزيـــم (HMC) (Veizer, 1980 همانگونه كه در اين شكل ديده مىشود، نمونههاى كربناتى سازند قم در منطقه مادآباد داراى مقادير پايين (كمتر از يک)
 بوده و در محدوده كلسيتهاى پُر منيزيم قرار مى گییرند.

ديازنتيكى در اين توالى باشد.

براساس نســبت استرانسيم بههنجارشـــده به كلسيت (l...*Sr/Ca) بسته و باز قابل تعيين است (Veizer, 1983). در سامانههاى
 2006). در شكل 1 تغييرات مقادير دير Sr/Ca*.... براى نمونههاى كربناتى ســـازند قم در منطقه مادآباد نشان داده شـــده است. براى مقايسه، محدودههاى مربوط به روندهاى ديازثنتيكى آراگونيت (A)، كلســـيت پُر منيزيم

 نيز ارائه شده است

موقعيت قرارگيرى اين نمونهها بر روى نمودار نسبت/Mn/ در برابر Mn (شـــكل 9) نشـــان مىدهد نمونههاى كربناته
 داراى مقادير بيشـــتر نسبت Sr/Mn هستند. اين امر بيانگر تأثير كمتر فرآيندهاى ديازنرى و انحلال بر روى كربناتهاى ســـازند قم در منطقه مادآباد و حاكى از بسته تا نيمه بسته بودن سيســـتم ديازنتيكى است. اين نتيجه گيرى با ترسيم مقادير Sr/Ca در مقابل Mn (شكل ^) نيز تأييد مىشود.

رسم نسبت Sr/Mn در برابر Mn بهعنوان معيارى مفيد بــراى برآورد ميزان انحلال ســـنـتهاى كربناته كاربرد دارد (Rao, 1991). در اثر انحلال، آراگونيت و كلسيت پُر منيزيم ناپايدار شده و به كلسيت كمم منيزيیم پايدار تبديل مى ارشوند.
 افزايش ميزان منگَنز مىشــــود (Budd, 2002). نمونهاهاى آهكى ســـازند قم در منطقه مادآباد داراى نســـبت Sr/Mn بالا (بين ا تا $ا$ () و مقدار Mn پاييين تا متوســط مى باشند.

شــكل 9. موقعيت نمونههاى ســنـگ آهكى سازند قم در برش كانســار مادآباد بر روى نمودار نســـبت Sr/Mn در مقابل Mn. براى مقايسه،
 آهكهاى آراگونيتى و كلسيتى مزدوران (Adabi and Rao, 1991) نيز ارائه شده است. اين نمودار بيانگًر تأثير كمتر فرآيندهاى ديارّنزى و انحلال و بسته بودن سيستم ديازنتيكى براى سنگً آهكـهاى سازند قم در ائ اين منطقه است

سازندهاى كربناته آسمارى (به سن اليگوسن-ميوسن)
 مخازن نفتى و گازى ايران محسوب مىشوند، داراى تركيب كانىشناســـى اوليه آراگونيتى بـــوده و فرآيندهاى ديازتزنى و انحلال نقش باســـزايـي در افزايش كيفيــت مخزنـى آنها

Honarmand and Amini, 2012; Adabi et) داشتهاند
al., 2016; Jafarian et al., 2017 كه در مطالب بالا توضيح داده شد، سازند قم داراى تركيب كانىشناســـى كلســـيتى با ميزان انحلال پايين مىباشد. بنابراين، فرآيندهاى ديازنزى بهويزه انحلال نقش چند پانى بالا رفتن كيفيت مخزنى اين سازند نداشته است. لذا، عامل اصلى در بالا رفتن كيفيت مخزنى سازند قم در ميدانهاى گَازى ايران مركـــزى (نظير ميدانهاى ســـــاجـاجه و البرز) را ا مىتوان به وجود درزهها و گســلـها نسبت داد. اين مطلب Karami-Movahed., et) توسط كرمى موحد و همكاران (al., 2016 نيز اشاره شده است.

موقعيت منطقه مورد مطالعه بر روى نقشه جغرافيايى ديرينه زمان ميوسن (Harzhauser and Piller, 2007)، بيانگً قرارگیرى اين منطقه در عرض جغرافيايى هـا درجه شمالى مىباشد (شكل •1). اين امر تأييدى بر رسوبگذارى سازند قم در منطقه متعلق به كربناتهاى مناطق معتدله (temperate carbonate) اوليه كلسيتى براى كربناتهاى اين سازند است كه با نتايج مطالعات پتروگرافى و زئوشيميايى همخوانى دارد. تركيب كانىشناسى اوليه سازند قم با سازند معادل آن در حوضه رســوبى زاگرس (سازند آســـمارى)، بهدليل رسوبگگارى

 انجامشده بر روى سازند آسمارى بيانگر تركيب كانىشناسى اوليه آراگونيتى براى نهشتههایى كربناته اين سازند مى باشد (كريمـــى مصدق و همكاران، 9 (ك) ؛ كاكمهم و همكاران، .(1ヶq4

شكل •1. موقعيت قرارگيرى منطقه مورد مطالعه بر روى نقشه جغرافياى ديرينه زمان ميوسن (با اندكى تغييرات ازHarzhauser and Piller, 2007)

پتروگرافی، ســنـگهاى آهكى سازند قم در منطقه مادآباد از
 گَ پشتيبان (وكســـتون) و گاهی دانه پشتيبان (پکستون) تشــكيل شـــدهاند. نتايج اين مطالعات بيانگر نقش ناحیيز

ســازند قم در برش كانسار مادآباد •19 متر ستبرا داشته
 مارنى و مارن تشكيل شـــده است. براساس نتايج مطالعات

مهسا نورى و همكاران
 برش تلن كوه (جنوبباخترى ســـمنان). رسوبشناســى

 زمينشناسى و اكتشافات معدنى كشور. - عالىيور، ش.، ميرزايى عطاآبادى، م.، زهدى، ا. و

 انجمن ديرينهشناسى ايران، \AV-IV اسفند هوسا، دانشعاه پيام نور طبس، •19.

 و اكتشافات معدنى كشور.

 سازند آســـمارى در برش كوه ريگى، فصلنامه زمينشنـاسى ايران، اسار، 91-9.9.
-

 - محمديان اصفهانى، م.، صفرى، ا. و و وزيرى مقدم،

 رسوبى، 9، VG-YD.
 كانسار سلســـتين مادآباد، باختر قيدار. پاياننامه كارشناسى ارشد زمينشناسى اقتصادى، دانشگاه زنجان. IIT.

- Adabi, M.H. and Asadi Mehmandosti, E., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences, 33, 267277.
- Adabi, M.H. and Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Sedimentary Geology, 72, 253-267.

پديدههاى ديازنتيكى نظير انحلال در اين سنگها و تأييدى بر كانىشناسى اوليه كلسيتى آنها است. پنج ريزر اسخساره اصلى اصنى در بخشههاى سنگ آهكى سازند قم در منطقه مادآباد قابل شناسايى است. توزيع فرامينيفرها و ساير اجزاء اسكلتى و غير اسكلتى و همچنیين تغييرات جانبى و عمودى ريزرخسارهها نشان مىدهد كه مدل رخسارهاى سازند قم در برش مذكور در پلتفرمهاى كربناته نوع شلف نهشته شده است. تغييرات Mn در مقابل نسبت Sr/Na و Sr در مقابل Na براى نمونههاى ســـنگگ آهكى سازند قم در منطقه مادآباد و مقايسه آنها با محدودههاى كاى كلسيتى و آراگونيتى بيانگً تركيب

 در محدوده كلســـيتهاى يُر منيزيم قرار مى گیيرند. از طرف ديگر، اين نمونهها داراى نســـبت Sr/Mn بالا (بين ا تا سار) و مقدار Mn پايين تا متوسط مىباشند. اين امر بيانگر تأثير كم فرآيندهاى انحلال بوده و مىتواند دليلى بر بسته تا نيمه
 نقش كليدى شكستگىها در مقايسه با فرآيندهاى ديازنزى و
 گازى ايران مركزى (نظير ميدانهاى سراجه و البرز) است. منابع - آدابى، م.ح.، • •هسا. زئوشـــيمى رسوبى، انتشارات
آرین زمين، چاپ دوم، پ•ه.

- آقانباتـى، س.ع. انتشارات سازمان زمينشناسى و اكتشافات معدنى كشور، تهران، ه人
 و بيوفاسيس ســـازند قم در برش دهشير بالا (جنوبغرب
 پالئواكولوزى كلنىهاى مرجانى ريفســــاز ميوسن پيشين در شـــمالباختر زنجان. چهارمين همايش منطقهاى تـانی تغيير اقليهم و گرمايش زمين، دانشــعاه تحصيلات تكميلى علوم
پايه زنجان، D.
- حســـينىنراد، س.م.، رامـــه، ح. و اهرىیور، ر.،
- Adabi, M.H., Kakemem, U. and Sadeghi, A., 2016. Sedimentary facies, depositional environment, and sequence stratigraphy of OligoceneMiocene shallow water carbonate from the Rig Mountain, Zagros basin (SW Iran). Carbonates and Evaporites, 31, 69-85.
- Adabi, M.H., Salehi, M.A. and Ghaveishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), southwest Iran. Journal of Asian Earth Sciences, 39, 148-160.
- Brand, U. and Veizer, J., 1980. Chemical diagenesis of multicomponent carbonate system, II, stable isotopes. Journal of Sedimentary Petrology, 51, 987-997.
- Brand, U., Azmy, K. and Veizer, J., 2006. Evaluation of the salinic I tectonic, Cancaniri glacial and Ireviken biotic events: Biochemostratigraphy of the Lower Silurian succession in the Niagara Gorge area, Canada and U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 192-213.
- Budd, D., 2002. The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: A case study from the Paleogene of west-central Florida. Journal of Sedimentary Research, 72, 116-128.
- Daneshian, J. and Ramezani-Dana, L., 2007. Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, Central Iran. Journal of Asian Earth Sciences, 29, 844-858.
- Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36, 491-505.
- Dunham, R.J., 1962. Classification of car-
bonate rocks according to depositional texture. In: Ham, W.E., (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1, 108-121.
- Flügel, E., 2010. Microfacies of Carbonate Rocks, Analysis Interpretation and Application. Springer-Verlag, Berlin, Heidelberg, 976.
- Furrer, M.A. and Soder, P.A., 1955. The Oligo-Miocene Formation in the Qom region (Iran). Proceeding. 4th World Petroleum Congress, 6-15 June, Roma, Italy, 267-277.
- Harzhauser, M. and Piller, W.E., 2007. Benchmark data of a changing sea-palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 8-31.
- Heydari, E., Arzani, N. and Hassanzadeh, J., 2008. Mantle plume: The invisible serial killerapplication to the Permian-Triassic boundary mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264, 147-162.
- Honarmand, J. and Amini, A., 2012. Diagenetic processes and reservoir properties in the ooid grainstones of the Asmari Formation, Cheshmeh Khush Oil Field, SW Iran. Journal of Petroleum Science and Engineering, 81, 70-79.
- Jafarian, A., Javanbakht, M, Koeshidayatullah, A, Pimentel, N., Salad Hersi, O., Yahyaei, A. and Beigi, M., 2017. Paleoenvironmental, diagenetic, and eustatic controls on the Permo-Triassic carbonate-evaporite reservoir quality, Upper Dalan and Kangan formations, Lavan Gas Field, Zagros Basin. Geological Journal, 53, 1442-1457.
- Karami-Movahed, F., Aleali, M. and Ghazanfari, P., 2016. Facies analysis, depositional environment and diagenetic features of the Qom Formation in the Saran Semnan, Central Iran.

مهسا نورى و همكاران

Open Journal of Geology, 6, 349-362.

- Khatibi Mehr, M. and Adabi, M.H., 2014. Microfacies and geochemical evidence for original aragonite mineralogy of a foraminifera-dominated carbonate ramp system in the late Paleocene to Middle Eocene, Alborz basin, Iran. Carbonates and Evaporites, 13, 127-148.
- Milliman, J., 1974. Marine Carbonates Recent Sedimentary Carbonates, Part 1. SpringerVerlag, New York, 375.
- Mohammadi, E., Safari, A., Vaziri Moghaddam, H., Vaziri, M.R., and Ghaedi, M., 2011. Microfacies analysis and paleoenvironmental interpretation of the Qom Formation, south of the Kashan, Central Iran. Carbonates and Evaporites, 26, 255-271.
- Okhravi, R. and Amini, A., 1998. An example of mixed carbonate-pyroclastic sedimentation (Miocene, Central Basin, Iran). Sedimentary Geology, 118, 37-54.
- Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6, 83-106.
- Rao, C.P., 1996. Modern Carbonates Tropical Temperate Polar. Introduction to Sedimentology and Geochemistry. Howrah, Tasmania, 206.
- Rao, C.P. and Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103, 249-272.
- Rao, C.P. and Amini, Z.Z., 1995. Faunal
relationship to grain-size, mineralogy and geochemistry in recent temperate shelf. Carbonates, western Tasmania, Australia. Carbonates and Evaporites, 10, 114-123.
- Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rogl, F., Kroh, A., Aubry, M.P., Wielandt-Schuster, U. and Hamedani, A., 2009. The Oligo-Miocene Qom Formation (Iran): Evidence for an Early Burdigalian restriction of Tethyan Seaway and closure of its Iranian gateways. International Journal of Earth Sciences, 98, 627-650.
- Schuster, F. and Wielandt, U., 1999. Oligocene and early Miocene coral faunas from Iran: paleoecology and paleobiogeography. International Journal of Earth Sciences, 88, 571-581.
- Vaziri-Moghaddam, H. and Torabi, H., 2004. Biofacies and sequance strayigraphy of the Oligocene succession, Central basin, Iran. Neues Jahrbuch für Geologie und Paläontologie, 6, 321344.
- Veizer, J., 1983. Trace elements and isotopes in sedimentary carbonates, Reviews in Mineralogy and Geochemistry, 11, 265-299.
- Veizer, J. and Demovic, R., 1973. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequence of the western Carpathians. Journal of Sedimentary Petrology, 43,1, 258-271.
- Winefeld, P.R., Nelson C.S. and Hodder, A.P.W, 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry, a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11, 19-31.

