بررسىكارايىمدل هيبريدىهالت-وينترزموجكى(WHW)

در شبيهسازى تراز سطح ايستابى آبخوان ساحلى اروميه

على ميرعربى'، حميدرضا ناصرى (ז و"، محمد نخعى" و فرشاد عليجانى"

f. أ استاديار گروه زمينشناسى معدنى و آب، دانشكده علوم زمين، دانشگاه شهيد بهشتى، تهران

تاريخ دريافت: $9 V / \cdot V / I Y$
تاريخ پنيرش:
چچكيده

 ورودى مدل HW قرا كرَرفته و با تجميع خروجى ها تراز محاسباتى سططح ايستابى به دست دست آمد. يس از آن عملكرد مدل WHW با مدلهاى خطى ARIMA، HW و SARIMA و نيز مدلماى هوشممند غيرخطى شبكه عصبى

در قياس با مدل هاى خطى بيشتر مىشود.
وارثهاى كليدى: هالت وينترز، تبديل موجك، شبكه عصبى، ركرسيون بردار رشتيبان، آب زيرزمينى.

مقدمه

زيرزمينى علاوه بر مدلهاى دانش مبنا (عددى، فيزيكى و تحليلى)، مدلهاى داده مبناى (سرى زمانى) زيادى تكامل يافته است. سرى زمانى تراز سطح آب زيرزمينى همانند ساير
 خودهمبســـته، تناوب (بهصورت فصلى) و تصادفى (گوس)

شبيدســـازى دقيـق و واقتى نوســـانات تراز ســطح ايسـتابى مىتواند نقش مهمى در حل بسيارى از مشكلات هيدرورئولوزيكى و محيط زيســـتى داشته باشد و اطلاعات موثرى در ارتبــاط با برنامهريـــزى و مديريت كمى و كيفى

" نويسنده مرتبط: H-nassery@sbu.ac.ir

درياحچه اروميه) و مقايســه عملكــرد آن با مدل هاى خطى SARIMA, ARIMA, HW عصبى (ANN) و رگرســيون بردار پشتيبان (SVR) مورد
 هوابى بر نوسانات سطح درياحه بها بطور مستقيم مؤثر است

 ازاينرو بررسى تأثير نوسانات سطح درياته

 از قبيــل پيشنبينــى روانــاب و تغييرات درجــــهـ حرارت ارت

.(Sudheer and Suseelatha, 2015)

منطقه مورد مطالعه

منطقه مــورد مطالعه آبخوان اروميه با با طول جغرا مـرافيابى

 سردو خشك مىياشد. ارتفاعات مشرف بها اين محدوده ازنظر انظر

 قسمتى از نزولاتى كه در سطح كوهستانهان اري مرتفع ريزش

 آبهــاى زيرزمينى رســيده و آن را تغذيه مىنمايد. آبخوان

 حلقه $چ$ حــاه عميق و نيمهعميق و 49 دهن رشته قنات مىباشد (شركت آب منطقهاى آذربايجانغربى،

 مدلسازى نوسانات تراز آب زيرزمينى استفاده شدند مىتوتان به مدل ARIMA و و SARIMA اشــــاى خــاره كرد. مدل هالت وينترز (Holt-Winters) نيز از جمله مدلهاى

 بهطورى كه مشاهدات نزديكتر دارارى وزن بيشتر و و مشاهن دورتر داراى وزن كمترى هستند. اخيراً از اين مدل بدمنظور
 ســاحلى استفاده شده است (Yang et al., 2017). جـهت شبيهسازى نوســانات كوتامدلـدت ميزان تغييرات كلريد در آب زهكشى شـــده از معادن اوسترون از مدل هالت وينترز |استفاده شده است (Dabrowska et al.,2015).

 بيان اطلاعات فركانســى و زمانى را بهصورت همزمان براى

 كرده است.

در اين ثرووهش سعى بر اين است كه با استفاده همزمان
 ارائه مـــدل هيبريدى هالت وينترز موجك (WHW)، برايـي اولين بار شبيهسازى تراز آب زيرزمينى در در دو چاه مشاهدها

على ميرعربى و همكاران
 به مدت 18 سال استفاده شد. چاه مشاهدهاى OW1 كه در منطقه شرق دشــت و در مجاورت درياچه اروميه قرار
 و چاه مشـــاهدهاى OW2 در منطقه غرب دشــــانـت و دور
 آب درياحه مىباشــنـد. مشخصات آمارى آب زيرزمينى در چامهاى مشـــاهدهاى مورد مطالعه در جدول ا نشان داده آب زيرزمينى در دو چاه مشـــاهدهاى به نامهاى OW1 و و شده است.

شكل ا. موقعيت منطقه مورد مطالعه همراه با موقعيت چامها و خطوط هم چتانسيل

$$
\text { جدول } 1 \text {. پارامترهاى آمارى تراز آب زيرزمينى در چامهاى مشاهدهاى مورد مطالعه }
$$

چا0هاى مشاهدهاى	پارامترهاى آمارى				
	ميانگين	بيشينه	كمينه	انحراف معيار	
OW1	\|YVV/•1	Irva/rv	\|YVY/q		1/1
OW2	IMFMAT	\|rgT/4i	וrMera	V / M	

منظور از تناوب در اين مدل تنييراتى اســت كه دوره تكرار
 معادله هموارســاز جزء فصلى مىباشــد. سه عامل ذكر شده مطابق روابط زير محاسبه مىشوند (Winters, 1960):
$F_{t}=\alpha\left(F_{t-1}-T_{t-1}\right)+(1-\alpha) \frac{Y_{t-1}}{S_{t-\kappa}}$
$S_{t}=\Delta S_{t-K}+(1-\Delta) \frac{Y_{t}}{F_{t}}$
$T_{t}=\gamma T_{t-1}+(1-\gamma)\left(F_{t}-F_{t-1}\right)$
 زمان

 شــده و ه، Δ و γ هم هعَى ضرايب هموارسازى ها هالت وينترز هستند كه مقدار آن ها همواره بين صفر و يكى خواهد بود.

تبديل موجك

تابع تبديل موجكى قابليت تجزيه سرى زمانى به چیندين
 زير سرىهاى زمانى بددست آمده از سرى زمانى آنى كلى، رفتار

 با

$\int_{-\infty}^{+\infty} \frac{|\varphi(\omega)|}{|\omega|^{2}} d \omega<+\infty$
اين شــرط با عنوان شرط پذيرفتتى براى موجك (0)
 ضرايب a و و در آن نتش انتقال و مقياس سيگنال مورد نظر را دارند (Mallet, 1998).
$\varphi_{a, b}(x)=\frac{1}{\sqrt{a}} \varphi\left(\frac{x-b}{a}\right)$
(b) در نهايت ضرايب موجك در هر نقطه از ســيحَنال

1. Smoothed

مدل هاى خطى سرى زمانى

اصولاً مدل هاى تحليل سرى زمانى (داده مبنا) به مدل

 HW, ARIMA, AR, MA الف) مدل ARIMA و SARIMA: از جمله روشهاى
 (Box etal., 2015) مرتبه تفاضلى كردن و تعيين مرتبه هر يك از از فرآيندهاى اتي اتو اتو
 مدل ARIMA بلصورت (p,d,q) نمايش داده میششود كه p و و و مرتبــهـ تأخير زمانى براى خطاى پيشا

 دوره تناوب S میشود. براى مدل سازى اين نوع سرى زيا زمانى معمولاً مدل SARIMA (q,d,p)(Q,D,P) كه مىياشد، استفاده مىشود. در اين مدل ضرايب (q,d,p)
 مدلهـــاى ARIMA و SARIMA بهطوركلى داراى چچهار مرحله شناســايى مدل، برازش الگَو، تشخيص درستى الَّو و پيشبينى مى باشند. بررسى مناسب مدل با تجزيـي

 بايد داراى خواص متغيرهاى تصادفى مســتقل با ميانگًان

صفر و واريانس ثابت باشند. ب) مـــدل هالت وينترز (HW): معمولاً براى پیشيشينى

 اساس اين مدلها بر ميانگّين موزون استوار است كـين اسه در اين

 اين مدل نياز به برآورد سه مؤلفه سطح يا (ميانگَين)، روند

 تكتـك فركانسهاى تقريب (A) و جزئيات (A) بهصورت جداگانه وارد مدل HW مىشوند. در اين روش به
 HW يك از زيرسرى تقريب و جزئيات سرى زمانى با يكديگر جمع و سرى زمانى شبيهسازى شده به دست مى آيد. در روش دونى دوم
 مراحل مدل HW طى دو مرتبه صورت مى يكـبار تقريب (a) و بار ديگر مجموعه فركانسهاى دئى جزئيات
 انتها طبــق اصل جمع آثار، نتايج خروجــــى از هر دو مدل با يكديگر جمع مىشــــوند تا ســـرى زمانى محاسباتى به دســت آيد. مطالعات قبلى در شبيهســـازى فرآيندهاى هيدروكليماتولوريك نشان مىدهد كه استفاده از روش اول

 از روش اول جهت استفاده مدل هيبريدى WHW استفاده شده است. با توجه به مقياس تجزيه تبديل موجك استفاد انـوه

 زبان برنامهنويسى MATLAB و براى مدل HW از نر نرمافزار
$\operatorname{CWT}(a, b)=W f(a, b)=\frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(x) \varphi$
$\left(\frac{x-b}{a}\right) d x=\int_{-\infty}^{+\infty} f(x) \varphi_{a, b}(x) d x$
توابع موجك داراى انواع بسيارى هستند كه مـممترين و پركاربردترين آنها شامل تابع موجكdb4 مى باشند كهبا توجه به كارهاى گذشته صورت گرفت (Moosavi et al., 2013).
 از اين موجك مادر با سه سطح تجزيه استفاده شده است.

مدل هيبريدى هالت وينتترزموجكى(WHW)

ســـاختار مدل هيبريـــدى WHW از دو بخش تبديل موجك و HW تشـــكيل شده است كه تبديل موجكى نقش پيشپردازش دادههاى ورودى و مدل HW تقش را دارد (شكل †) . در روش پيشنهاد شده ابتدا سرى زمانى

 H تقريب (D) و فركانسهاى جزئيات (D, 1 (D) تجزيه مىشود. بنابراين تعداد دادههاى ورودى برابر با i+1 خواهد
 بهعنوان ورودى مدل HW به كار گرفته مىشوند مــدل HW يكى مدل تـــى متغيره اســت و فقط يى

 اســتخراج فركانسها، مدل تركيبى WHW میتواند اند به دو دو

شكل r. ساختار شماتيكى مدل هالت وينترز موجكى
.(Nakhaei and Saberi, 2012)
در مدل تركيبى WHW تمــام فركانسهاى حاصل از تبديل موجك در مدلسازى تراز سطح آب زيرزمينى در نظر نـر گرفته مىشـــود. براى اعمال تبديل موجك در در مدل HW، ابتدا سرى زمانى مورد نظر در نرمافزار

 Minitab تبديل گرديد. سیس تكـتكـ فركانسها

 مرحله بعد بهمنظور صحت سنجى مدل انتخابىى مرابي، مقدار هر
 از ضرايب مذكور محاســبه شده است. در انتها و طبق اصل

 WHW و مقايســه مقادير فركانسها وانـا واقعى و شبييدسازى شــده در OW1 و OW2 OW Oه همراه ضرايب هموارســازى و و معيار سنجش خطا (مرحله صحت سنجى) در شكلهاى ٪ و
جهت بررسى و اثبات ســازگگارى و كارابی مدل تركيبى با مدل WHW
 شبكه عصبى مصنوعى (ANN) و ركرسيون بردار پشتيبان
 از تغييــرات تراز ســطح آب زيرزمينى چاهمهاى SARIMA
 دادههاى سطح آب درياحه، بارش، ميزان آبدهى نزديكترين ايسـتتكاه هيدرومترى بهعنوان ورودى مدل است استفاده شد.

 موثر در نوســانات سطح آب زيرزمينى منطقه استـ انـي اما با اين اطلاعات يا بهصورت مســتقيم قابل اندازمكيرى نبوده و و يا
 نتَرفته و در دســترس نمىباشـــنـد. لذا بامنظور جلوكيرى

معيار ارزيابى خطا

 ساتكليف (NSE) مطابق با روابط زير بهمنظور ارزيابى كارابى و خطاى هر شبكه و توانائى آن براى پيشگَوئى دقيق استفاده

MAE $=\frac{1}{N} \sum_{i=1}^{N}\left|H_{P i}-H_{0 i}\right|$
$\mathrm{R}=\frac{\left(\sum_{i=1}^{N}\left(\mathrm{H}_{\mathrm{oi}}-\overline{\mathrm{H}_{\mathrm{o}}}\right)\left(\mathrm{H}_{\mathrm{p}}-\overline{H_{p}}\right)\right)^{2}}{\sum_{i=1}^{N}\left(\mathrm{H}_{\mathrm{Oi}}-\overline{\mathrm{H}_{\mathrm{o}}}\right)^{2} \sum_{i=1}^{N}\left(\mathrm{H}_{\mathrm{p}}-\overline{\mathrm{H}_{\mathrm{p}}}\right)^{2}}$
NSE $=1-\frac{\sum_{i=1}^{N}\left(H_{0 i}-H_{p i}\right)^{2}}{\sum_{i=1}^{N}\left(\mathrm{H}_{\mathrm{Oi}}-\overline{\mathrm{H}_{\mathrm{O}}}\right)^{2}}$
در روابط فوق Hi و N تعداد كل مشاهدات است. بهيننهرين جواب براى مدل هنگگامى ايجاد خواهد شـــد كه RMSE و MAE صفر و R و NSE به سمت يك ميل كند.

نتايج مدلسازى و بحث

 مشاهدهاى آبخوان ساحلى و مقايسه عملكرد با مد مدل خطى ARIMA, HW عصبى (ANN) و ركرســيون بردار پششتيبان (SVR) و تأثير
 است. در مدل تركيبى WHW براى سنجش اثر آناليز موجـي موريك

 تجزيه) ارزيابى مى كند. بنابرا اين سرىهاى زياى زمانى كوتاه و بلند

را در مدلســـازى به دســت آورد، اما در چاه OW2 ويغگیى خود همبسته و فصلى تك تناوبه كمتر از چاه OW1 است و داراى تناوبهاى چندگًانه است كه اعمال تبديل موجى در بهبود مدل بسيار مؤثر بوده است. در نتيجه مىتوان مدل تركيبى WHW , ا بهعنوان مدلى مطلوب براى شبيهسازى تراز سطح ايستابى با تناوب چندگًانه و غيرخطى معرفى كرد. در مقايســـه نتايج مدلهـــاى ARIMA و SARIMA

همحچنيــن مىتوان قــوى بودن ويزگگى خودهمبســـتـگى و تناوبهاى فصلى منظم چاهOW1 نسبت به OW2 استنباط نمود، چرا كه نتايج بهدستآمده در مدل SARIMA براى چاه مشاهدهای OW1 بهتر از OW2 مىباشد. نتايج حاكـــى از عملكــرد و دقت مناســـب مدلهاى غيرخطـــى ANN و SVR نســـبت به مدلهــــاى خطى و هيبريدى است. به علت ســـاختار بالقوه، الگُوريتم آموزش و وجود هســـته پردازش در مدلهـــاى غيرخطى ANN و SVR
 نتيجه دقت شبيهسازى فراهم مىشود. بهطوركلى عملكرد مدل هيبريـــدى WHW از مدلهـــــى ARIMA ,HW و بهتر اســت و در قيـــاس با مدلهاى غيرخطى SARIMA WHW عملكرد مشابهى دارد. مدل تركيبى ANN را مىتوان يك مدل شبه غيرخطى در نظر گرفت كه از طريق مدل خطى HW تكـتك فركانسهاى سرى زمانى كه باعث ايجاد رفتار خطى شده را شبيهسازى و با تجميع آثار هر يكى از فركانسهاى شبيهســـازى شده به مدلسازى فرآيندهاى نسبتا پیچֵيده اقدام مىكند. گفتنى است هرچچه احصاى ریز فركانس (با بهكارگيرى موجك مادر و سطح تجزيه مناسب) با دقت بيشتر صورت گيرد بهمراتب دقت مدل هيبريدى در مدلسازى فرآيندهاى غيرخطى افزايش مى يابد. در مقايســــه دو چاه مورد مطالعه، دقت تمامى مدلها در چاه OW1 نســـبت به چاه OW2 بيشــتر است. دليل ايــن موضوع در ماهيت ســـرى زمانى آنها نهفته اســـت. بهطورىكـــه چاه OW1 كه در مجـــاورت درياحهه و متأثر از نوســانات منظم فصلى آن اســـت، داراى رفتـــار فصلى و خودهمبستگى قوىتر است و بهراحتى با مدلهاى خطى و

از افزايش ابعاد ورودى و خطاى مدل امكان اســتفاده اين قبيـــل اطلاعات وجود نداشـتـ. در مدلهـــاى ARIMA و SARIMA ابتـــدا تغييــرات تراز ســطح آب زيرزمينى با استفاده از مدلهاى فصلى ايستا شد و سپس با بهرهگیيى از قابليتهاى تحليل خودهمبستگى (ACF) و خودهمبستگى جزئى (PACF) ضرايب مربوطه شــامل (p,d,q,P,D,Q) شناسايی شد. در مدل شبكه عصبى از شبكه پرسپترون چند لايه (MLP)و جهت آموزش از الگوريتم لونبرگ-ماركوت و تعيين تعداد بهينه گره ميانى از روش سعى و خطا استفاده شد. در طراحى ساختار مدل SVR از تابع RBF و انتخاب پارامترهاى بهينه C, ع, γ از روش سعى و خطا استفاده شد MATLAB (Kecman, 2005) تراز سطح آب زيرزمينى آبخوان ساحلى اروميه در مدلهاى ANN ANN, SARIM, ARIMA, HW ارائه شده است. مطابق جدول، مدل تركيبــى WHW نتايج بهترى را نسبت به مدل HW ارائه داده است كه توانايى تبديل موجك در آناليز و چند مقايســـه كردن سرى زمانى و قابليت مدل در شبيهسازى هر يك از فركانسها را نشان مىدهد. در واقع مدل HW به دليل ماهيت خودهمبســـتگى و تك تناوبى قادر نيست بهتنهايى تراز آب زيرزمينى آبخوان ساحلى كه از مشـــخصات چند تناوبه برخوردار است را مدلسازى كند. اســتـفاده از قابليت چنـد مقايسه شدن سرى زمانى و استخراج تناوبهاى چندگًانه، غيرخطى و بلندمدت تراز آب زيرزمينى در تبديل موجك، منجر به افزايش دقت مدل HW
 در دو چاه مشاهدهاى مورد مطالعه، آشكار مىشود كه در چاه OW2 تبديل موجكى تأثير بسيار بيشترى در افزايش OW2 دقت مدل فصلى HW داشته است، بهطورى Oه در دي مقــدار RMSE , 9 درصد و مقــدار NSE را •r درصد بهبود داده درحالىكه در OW1 مقادير RMSE و NSE به ترتيب به ميزان٪ آن است كه چاه OW1 داراى تناوبهاى فصلى منظم است

شكل ّ. مراحل شبييسازى فركانسهاى سرى زمانى OW1 در مدل WHW به همراه ضرايب هموارسازى و معيار سنجش خطا در چاه OW1

شكل F F مراحل شبيهسازی فركانسهاى سرى زمانى OW2 در مدل WHW به همراه ضرايب هموارسازى و معيار سنجش خطا در جاه OW2

جدول 「. ساختار و نتايج مدلهاى ANN, SARIM, ARIMA, HW و SVR در چامهاى مورد مطالعه

Obs. well	Data-Driven models	Stracture	Trianing Step			Testing Step		
			R	RMSE	NSE	R	RMSE	NSE
OW1	WHW	db4 , i=3	0.87	0.67	0.67	0.78	0.75	0.74
	HW (α, γ, Δ)	(0.2,0.1,0.3)	0.81	0.64	0.79	0.69	0.86	0.68
	ARIMA(p,d,q)	$(1,1,1)$	0.67	1.28	0.61	0.72	1.60	0.55
	SARIMA(p,d,q)(P,D,Q)	$(1,1,1)(2,1,1) 12$	0.73	0.82	0.66	0.80	1.20	0.63
	ANN	$(4,3,1)$	0.85	0.54	0.72	0.86	0.67	0.73
	$\operatorname{SVR}(\gamma, \varepsilon, \mathrm{C})$	($10,0.1,15$)	0.90	0.43	0.82	0.90	0.59	0.78
OW2	WHW	db4 , i=3	0.88	1.12	0.73	0.83	3.13	0.53
	HW (α, γ, Δ)	(0.2,0.1,0.3)	0.94	1.44	0.89	0.78	5.20	0.45
	ARIMA(p,d,q)	$(1,0,1)$	0.84	2.77	0.77	0.75	6.20	0.34
	SARIMA(p,d,q)(P,D,Q)	$(1,0,1)(2,1,1) 12$	0.96	1.89	0.94	0.69	5.77	0.63
	ANN	$(4,2,1)$	0.93	2.81	0.86	0.88	2.71	0.77
	$\operatorname{SVR}(\gamma, \varepsilon, \mathrm{C})$	(1,0.1,20)	0.92	3.01	0.84	0.85	3.28	0.63

شكل ه. تراز سطح ايستابى مشاهداتى و محاسباتى حاصل از مدلهاى ANN, WHW و SVR در چاههاى OW1 و OW2

SARIMA SARIMA, ARIMA, HW ســطح آب زيرزمينى بهعنوان ورودى مدل براى پيشبينى سطح ايستابى استفاده شد. نتايج حاصله گوياى اين واقعيت است كه مدل تركيبى WHW دقت و كارايى بهترى نسبت به مدلهاى خطى ARIMA, HW و SARIMA داشـــته و هرچه ســرى زمانى مورد مطالعـــه از تناوبههاى چحندگانه و مولفههاى غيرفصلى بيشترى برخوردار باشد، دقت مدل هيبريدى WHW بيشتر مىشود. لذا مىتوان استنباط كرد كه در آبخوان ســاحلى، مدل WHW براى شبيهسازى تراز سـطـح آب زيرزمينى در بخشهاى دورتر از درياچه به دليل وجود رفتار خودهمبســتـتى ضعيف و لـــزوم اعمال تبديل موجكى در جهت تجزيه و احصاى تناوب نامنظم سرى زمانى عملكرد مطلوبــى دارد. همچحنين كارايـــى مدل هيبريدى بـــا مدلهاى هوشـــمند غيرخطى شــــبكهعصبى WHW (ANN) ســرى زمانى تراز سطح آب درياچه، ســطـح آب زيرزمينى، بارش، آبدهى ايستگاه هيدرومترى و بهعنوان ورودى به مدل غيرخطى استفاده گرديد مورد ارزيابى قرار گرفت. با توجه به
 مدل WHW و مدلهاى ANN و SVR، تشــابه و برابرى عملكرد و كارايى مدل هيبريدى WHW با عملكرد مدل هاى غيرخطى ANN و SVR در پيشبينى تراز ســطح ايستابى آب زيرزمينى در افق زمانى پيش رو (t+1) به اثبات رسيد.

منابع

- شــركت آب منطقهاى آذربايجان غربــى، شوّا. گزارش توجيهى ممنوعيت دشــت اروميه، دفتر مطالعات

- Box, G.E., Jenkins, G.M., Reinsel, G.C and Ljung, G.M., 2015. Time series analysis: Forecasting and control (5th ED). John Wiley and Sons, 680.

حتى غيرخطى شبيهسازى مىشود. چاه OW2 در دورترين نقطه آبخوان نسبت به درياچه قرار دارد و نوسانات آن كمتر تحت تأثير درياحپه و بيشــتر متأثـــر از فرآيندهاى تصادفى، ناشناخته و نامنظم هيدروكليماتولوزى و هيدروزئولوزيكى و عوامل غيرطبيعى از قبيل تغيير رزيم تخليه و تغذيه ناشــى از ايجاد دايك و ســـدها در ارتفاعات و بر روى رودخانهها و همچچنين چاههاى بهرهبردارى مىباشد. اين فرآيندها منجر به ايجاد نويز، تناوب غيرفصلى و پیچچیدگى فراوان در سرى زمانى چاه مذكور مىشــــود. از اينرو مدلسازى آن حتى در مدلهاى ANN و SVR با نتيجه مطلوبى صورت نمىگيرد (RMSE ${ }_{\text {ANN }}=2.17$, RMSESVR=3.28) Q دادههاى مشاهداتى در مقايســـه با دادههاى محاسباتى حاصـــل از مدلهـــاى ANN, WHW و SVR در دو چاه مشاهدهاى مورد مطالعه نشان داده شده است.

نتيجهدگيرى

در اين پ夫وهش، بـــراى اولين بار از توابع تبديل موجى براى رفع مشكل ماهيت خودهمبستگى، تكى تناوبى بودن و افزايش ارتقاى عملكـــرد مدل خطى هالت وينترز (HW)
 ماهانه تراز سطح آب زيرزمينى در افق زمانى پيش رو (t+1) اســتفاده شده است. آبخوان ســـاحلى اروميه بهعنوان يك آبخوان مناسب جهت بررســى ميزان تاثير نوسانات سطح درياچــــه اروميه بر دقت پیشبينـــى مدل هيبريدى HWH مورد اســتفاده گرفت. در اين راســـتا ابتدا با تبديل موجك مادر db4 با مقياس تجزيه ســـه سطحى سرى زمانى ماهانه تراز ســطح آب زيرزمينى دو چاه مشاهدهاى يكى در منطقه شرق آبخوان و در مجاورت درياحه اروميه ديگَى در منطقه
 سه فركانس جزئيات) تجزيه شد. سپس تكتـک فركانسهاى تجزيهشده بهعنوان دادههاى ورودى در مدل HW استفاده و در انتتهــا نتايج خروجى از هر يـــــ از چههار مدل HW با يكديگر جمع شد تا سرى زمانى محاسباتى در مدل هيبريدى به دست آيد. بهمنظور ارزيابى كارايى و عملكرد مدل WHW هيبريدى، نتايــج آن با مدلهاى خطى ARIMA, HW و
برر سى كارايى مدل هيبريدى هالت-وينترز موجكى ...

- Dąbrowska, D., Sołtysiak, M. and Waligóra, J., 2015. Short term forecasting of the chloride content in the mineral waters of the Ustroń Health Resort using SARIMA and HoltWinters models. Environmental and Socio-economic Studies, 3, 57-65.
- Kecman, V., 2005. Support Vector Machines: An Introduction, Theory and Applications. Springer-Verlag, New York, 4, 1-48.
- Mallat, S.G., 1998. A Wavelet Tour of Signal Processing. Second ed. Academic Press. SanDiego, 637.
- Moosavi, V., Vafakhah, M., Shirmohammadi B. and Behnia, N., 2013. Awavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Recourses Management, 27, 1301-1321.
- Nakhaei, M. and Saberi, A., 2012. A combined Wavelet-Artificial Neural Network model and its application to the prediction of groundwa-
ter level fluctuations. Journal Geopersia, 2, 77-91.
- Sang, Y.F., 2012. A practical guide to discrete wavelet decomposition of hydrologic time series. Water Recourses Management, 26, 33453365.
- Sudheer, G. and Suseelatha, A., 2015. Short term load forecasting using wavelet transform combined with Holt-Winters and weighted nearest neighbor models. International Journal of Electrical Power and Energy Systems, 64, 340346.
- Winters, P.R., 1960. Forecasting sales by exponentially weighted moving averages. Management Science, 6, 324-342.
- Yang, Q., Wang, Y., Zhang, J. and Delgado, J., 2017. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of south china. Applied Water Science, 7, 689-698.

